List of Figures

1.1 Decreasing trend of $B(M1)$ values for the MR bands 5
1.2 The atomic nuclei, in mass \sim 100 region, show antimagnetic rotational bands . 6

2.1 Single particle and collective excitations .. 13
2.2 Alignment of the nucleons ... 15
2.3 Rotation and Deformed Coupling ... 16
2.4 Alignment of the nucleons ... 17
2.5 Observation of the dipole band ... 23
2.6 Rotational spectrum in superdeformed nucleus 24
2.7 TAC calculations in Pb isotopes ... 25
2.8 Schematic diagrams of the shears mechanism 27
2.9 Orientation of the hole and the particle angular momentum vectors 28
2.10 Coupling scheme of the magnetic rotation 29
2.11 Schematic diagrams of the shears mechanism with the principal axis cranking . 31
2.12 Comparison of the experimental results with the SPAC model calculations 32
2.13 Comparison of the experimental $B(E2)$ values with the calculations 34
2.14 Comparison of the experimental $J^{(2)}/B(E2)$ values 35

3.1 Schematic diagram of the fusion evaporation reaction 41
3.2 Decay of the compound nucleus ... 42
3.3 Gamma ray crosssection .. 45
3.4 Schematic diagram of a clover detector .. 46
3.5 Indian National Gamma Array at TIFR .. 48
3.6 Block diagram for the digital DAQ ... 50
3.7 Construction of the level scheme .. 57
3.8 Angular distribution of the γ rays 59
3.9 Construction of the level scheme .. 61
3.10 Directional Correlation of the γ rays 62
3.11 Geometry of Compton polarimeter .. 66
3.12 Technique of the Doppler shift attenuation method 72
3.13 Schematic diagram of the decay scheme 74
3.14 Schematic diagram for side feeding of the levels 76
3.15 Configuration of the clover detector .. 78
3.16 Construction of the time difference spectrum 79
3.17 Linear fit of the time difference spectrum 80
4.1 Indian National Gamma Array at TIFR 85
4.2 PACE4 statistical model calculations .. 86
4.3 The gain matching procedures ... 90
4.4 Addback factor of a clover detector ... 91
4.5 Efficiency of the clover detector ... 92
4.6 Population of the residual nuclei ... 93
4.7 The width of the substate population (σ/I) of the reaction 93
4.8 Asymmetry correction factor $a(E_\gamma)$ for 90° clover detectors 95
4.9 Polarization sensitivity of the 90° clover detectors 95
4.10 Partial level schemes .. 96
4.11 Line shapes obtained from full clover and a single crystal data 97
4.12 Percentage of deviation of the lifetime results 99
5.1 Shape coexistence in 186Pb ... 102
5.2 Partial level scheme of 142Sm ... 105
5.3 Proposed level scheme of 142Sm ... 107
5.4 Angular distribution measurements for the transitions 113
5.5 Summed double gated spectra showing the transitions of the quadrupole structures I, II and III ... 115
5.6 Summed double gated spectra showing the transitions of the dipole structure IV .. 116
5.7 Summed double gated spectra showing the transitions of structure V .. 117
5.8 Estimation of the nuclear level lifetime of 7⁻ isomeric state from the time-difference spectra ... 120
5.9 Estimation of the nuclear level lifetime of an isomeric state from the time-difference spectra ... 120
5.10 Lineshape fitting for the transitions in the dipole band IV in 142Sm .. 122
5.11 Lineshape fitting for the transitions in the quadrupole bands I and III in 142Sm .. 123
5.12 Shell model calculations for the low lying states 126
5.13 Experimental $B(M1)$ values for the dipole band IV in 142Sm .. 127
5.14 Schematic description of the shears structure for the dipole band IV in 142Sm .. 128
5.15 Comparison of the SPAC model calculations for the dipole band IV in 142Sm .. 129
5.16 PES calculations for the quadrupole bands in 142Sm 131
5.17 Single particle routhians for protons and neutrons 133
5.18 Excitation energies of the quadrupole bands I, II and III in 142Sm relative to the rotating liquid-drop energy ... 134
5.19 Potential Energy Surface calculations 135
5.20 Comparison of the experimental and the calculated (CNS) $B(E2)$ values for the quadrupole bands I and III in 142Sm .. 136
6.1 Measured electric quadrupole transition rates 143
6.2 The schematic diagram of time reversed orbits at bandhead 144
6.3 Partial level scheme of 143Eu .. 148
6.4 Summed double gated spectra for the dipole structures 151
6.5 Parallel and Perpendicular scattering of the transitions 152
6.6 Summed double gated spectra for the dipole bands DB I & DB II 153
6.7 The partial level scheme of the dipole structure in 143Eu 154
6.8 Line shapes for the transitions in the dipole band DB I in 143Eu 155
6.9 Experimental $B(M1)$ values for the DB I and the DB II in 143Eu 157
6.10 Experimental $B(M1)$ values for the DB1 and the DB2 in 141Eu 158
6.11 Total rothian surface calculations for the dipole bands DB I and DB II in 143Eu 159
6.12 The energy and angle from the SPAC calculations 160
6.13 The comparison of experimental results with the SPAC model calculations . . 161
6.14 Double gated spectrum for the quadrupole structure in 143Eu 162
6.15 The partial level scheme of the quadrupole structure in 143Eu. 164
6.16 Parallel and Perpendicular scattering of the $E1$ transitions 165
6.17 Variation of P against R_{DCO} for the $E1$ transitions among with the 803.9 keV transition ... 166
6.18 Energy of the quadrupole structures I & II in 143Eu 168
6.19 Align angular momentum .. 168
6.20 Lineshpe of the γ-ray transitions of the quadrupole structures I and II in 143Eu 170
6.21 Comparison of the experimental results with the semi-classical model 172
6.22 Plot of the $J^{(2)}/B(E2)$ ratios for the quadrupole structures 173
6.23 The evolution of the shears angle over the entire AMR bands 174