TABLE OF CONTENTS
Topics

Acknowledgement I- VII
List of abbreviations VIII- IX
Summary X- XII

Chapter 1: Introduction 1- 52
1.1 Cell proliferation, differentiation and cancer 2
1.2 Hallmarks of cancer 3
1.3 Cancer associated genes
 1.3.1 Classification of genes associated with cancers 6
 1.3.2 Alterations of genes associated with cancer 7
1.4 Multi step progression of cancer 15
1.5 Identification of cancer associated genes
 1.5.1 Identification of gross chromosomal regions with abnormalities 19
 1.5.2 Fine genetic and physical mapping of the genes 20
 1.5.3 Narrowing down of candidate gene loci and confirmation of the candidate genes 25
1.6 Head and Neck Squamous Cell Carcinoma (HNSCC) 26
 1.6.1 Epidemiology 27
 1.6.2 Etiological factors 29
 1.6.3 Progression of head and neck lesions 31
 1.6.4 Modalities used in treatment of HNSCC 38
 1.6.5 Molecular progression of HNSCC 41

Chapter 2: Scope of the study 53- 55

Chapter 3: Objective 1: Analysis of the molecular profile (expression/methylation/deletion/mutation)
of the candidate genes in normal oral epithelium and in subsequent stages of HNSCC development. 56- 124
3.1 Introduction
 3.1.1 RBSP3 57
 3.1.2 LIMD1 57
3.1.3 CDC25A 60
3.1.4 Expression signature in the normal epithelium 60
3.1.5 Etiological factors affecting the genes 63
3.2 Objectives 63
3.3 Materials and methods 64
3.4 Results 80
3.5 Discussion 109
3.6 Conclusion 112

Chapter 4: Objective 2: Identification and characterization of the susceptible alleles of the candidate genes 125-153

4.1 Introduction 126
4.2 Objectives 128
4.3 Materials and methods 129
4.4 Results 131
4.5 Conclusion 152

Chapter 5: Objective 3: Analysis of interplay of the candidate genes in cell cycle, proliferation and apoptosis in HNSCC after neoadjuvant chemotherapeutic intervention. 154-171

5.1 Introduction 155
5.2 Objectives 157
5.3 Materials and methods 157
5.4 Results 161
5.5 Conclusion 170

Chapter 6: General discussion 172-176

References 177-209
Papers published/communicated 210-211
Seminars/Conferences/Workshops attended 212-213
Role Of Cdc25a, Limd1 And Rbsp3 In The Development Of Head And Neck Squamous Cell Carcinoma.

Shreya Sarkar

The study aims at understanding the importance of the candidate genes LIMD1, RBSP3 and CDC25A in the development of Head and Neck Squamous Cell Carcinoma (HNSCC). To this end, profiling of molecular signature (expression/ promoter methylation) was first performed in basal/parabasal and spinous layers of normal epithelium, followed by deciphering the mechanism of alterations (expression/ promoter methylation/ deletion/ mutation) during tumorigenesis and clinico-pathological correlation. Different alleles of markers of the genes were determined in normal specimens, followed by deletion of different sized alleles in HNSCC and correlation with expression in normal epithelium. Finally, the interplay of the genes was assayed in an in vitro model using pre- and post-neoadjuvant chemotherapy treated paired tumour/ adjacent normal specimens from the same patients to understand their significance in tumorigenesis.

The candidate genes, although tumour suppressors in function show distinct molecular signatures in the basal layer of normal oral epithelium and alteration during tumorigenesis. RBSP3 maintained its low expression/ high promoter methylation during tumorigenesis through further methylation/ deletion. Conversely, LIMD1 and CDC25A showed loss of high expression with/without promoter methylation respectively through deletion/promoter methylation. Both alterations and patient outcome were associated with the etiological factors tobacco and HPV.

Susceptible (CA) alleles of the candidate genes showed differential presence in the normal population. Most markers showed loss of the larger sized allele in tumours, although there was similar levels of expression of the genes in normal epithelium irrespective of allele size.

Study of interplay showed that compared to pre-therapeutic tumours, post-therapy tumours revealed diminished proliferation index/ enhanced apoptotic index, indicating halting of the cell cycle. RBSP3 and LIMD1 showed increased expression in post-therapy tumours, validating their tumour suppressive role in the cell cycle. Similarly, cMYC showed reduced expression with increased in RB/pRB ratio. Enhanced BAX/ BCL2 ratio in post therapy tumours indicated induction of apoptosis. Therefore, the candidate genes and their associated alleles were important, not only in development and progression of HNSCC, but also in inducing shrinkage of tumours during neoadjuvant chemotherapy. Assessment of their alterations and their outcome to therapy might prove to be valuable in their use as diagnostic and prognostic tools in head and neck cancers.

Shreya Sarkar

24/11/2015