PAPERS PRESENTED/ CONFERENCES/ WORKSHOPS ATTENDED

Image adapted from images.clipartpanda.com

2. Poster presentation at the symposium “Chemistry and Biology: Two weapons against diseases” titled “Study of the Molecular Mechanism of Tumor Shrinkage in HNSCC due to Neoadjuvant Chemotherapy”, organized by S.B.C (India) at Kolkata from November 8th-11th, 2012.

4. Poster presentation at the 9th Annual Conference of I.S.C.C.P. titled “Prevalence of HPV16, 18 in Head and Neck Squamous Cell Carcinoma (H.N.S.C.C.) of Indian Patients” at Kolkata from February 22nd to 23rd, 2014.

5. Poster presentation at Cancer Awareness Day, organized by I.A.C.R. (West Bengal Chapter) and C.N.C.I., titled “Differential Alterations of LIMD1, RBSP3 and CDC25A are required for transformation of Normal Basal/Parabasal epithelium to HNSCC” at Kolkata on November 7th, 2014.

Gene Section
Review

CTDSPL (CTD (Carboxy-Terminal Domain, RNA Polymerase II, Polypeptide A) Small Phosphatase-Like)

Shreya Sarkar, Guru Prasad Maiti, Chinmay Kumar Panda

Department of Oncogene Regulation, Chittaranjan National Cancer Institute, 37 S P Mukherjee Road, Kolkata - 700026, West Bengal, India (SS, GPM, CKP)

Published in Atlas Database: March 2014
Online updated version : http://AtlasGeneticsOncology.org/Genes/CTDSPLID40189ch3p22.html
DOI: 10.4267/2042/54161

This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 2.0 France Licence.
© 2014 Atlas of Genetics and Cytogenetics in Oncology and Haematology

Abstract

Review on CTDSPL, with data on DNA/RNA, on the protein encoded and where the gene is implicated.

Identity

Other names: C3orf8, HYA22, PSR1, RBSP3, SCP3
HGNC (Hugo): CTDSPL
Location: 3p22.2

Diagram shows the different transcripts of CTDSPL (Brown, Blue, Grey and Maroon boxes). Beginning of boxes represents transcription start sites. Filled areas represent translated regions. The larger form, CTDSPL B is shown as CTDSPL 001, whereas the smaller form, CTDSPL A is shown as CTDSPL 002. Image adapted from Ensembl.org.
Schematic diagram of full length RBSP3 protein, showing different domains. Adapted from PDB O15194. Data origin/
Colour codes: Data in Green originates from UniProtKB; Data in Yellow originates from Pfam, by interacting with the HMMER3
website; Data in Grey has been calculated using BioJava. Protein disorder predictions are based on JRONN, a Java
implementation of RONN. (a. Red- Potentially disordered region. b. Blue- Probably ordered region. Hydropathy has been
calculated using a sliding window of 15 residues and summing up scored from standard hydrophobicity tables. a. Red-
Hydrophobic. b. Blue- Hydrophilic); Data in blue originates from PDB. Secstruc- Secondary structure projected from
representative PDB entries onto the UniProt sequence. (a. Red box - Helix. b. Yellow box - Sheet. c. Grey tube- Coil); Data in red
indicates combined ranges of Homology Models from SBKB and the Protein Model Portal.

DNA/RNA

Description

Located in the short (p) arm of chromosome 3, the length of the CTDSPL gene is about 122.5 kb, contains 8 exons and is arranged in a telomere to centromere orientation.

Transcription

The full length transcript of CTDSLP is 4459 bp (Ensembl, Transcript ID ENST00000443503). A total of 8 transcripts can be generated, out of which 5 are protein coding, 1 undergoes nonsense mediated decay, while the rest 2 do not code for a protein product. However, two splice variants of CTDSPL, the smaller CTDSPL A (lacking exon 3, therefore short of 33 bp, 11 amino acids) and the full length CTDSPL B were identified by Kashuba et al., 2004.

Interesting observation: The transcription start site for CTDSPL A and CTDSPL B are different (from ensemble.org). While the larger B form has a shorter 5’UTR, the smaller A form has a larger 5’UTR, although their translation start sites remain common. Difference in the size of the 5’UTR may account for differential splicing between the isoforms.

Pseudogene

None reported.

Protein

Description

The full length CTDSPL protein (CTDSPL B) is 276 amino acids in length, with a molecular weight of 31 kD.

The smaller protein, CTDSPL A is 265 amino acids in length (amino acids 79-89 missing) and 29.9 kD in weight. Amino acids 102-260 contain the FCP1 homology domain, which contains an essential protein serine phosphatase that dephosphorylates the C-terminal domain (CTD) of RNA polymerase II.

Localisation

Both nuclear and cytoplasmic (Maiti et al., 2012; Sarkar et al., 2013).
CTDSPL Protein expression data from MOPED¹, PaxDb² and MAXQB³. 1. MOPED - Eugene Kolker, Bioinformatics & High-throughput Analysis Lab, Seattle Children's Research Institute. 2. PaxDb - Christian von Mering, Bioinformatics Group, Institute of Molecular Life Sciences, University of Zurich. 3. MAXQB - Matthias Mann, Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Germany. The data was normalized as follows: 1. For each sample, ppm protein values were calculated, if not provided so by data sources. For each sample from MAXQB, iBAQ expression values were divided by sum of values of each sample, and multiplied by 1000000. For all samples, data was gene centrically aggregated by summing expression values of all isoforms for each gene. 2. For better visualization of graphs, expression values are drawn on a root scale, which is an intermediate between log and linear scales as used for our mRNA expression graphs (Safran et al., 2003).

Function
- CTDSPL is a serine phosphatase which regulates cell growth and differentiation. It dephosphorylates RB at serine 807/811 (hence called RB1 serine phosphatase from human chromosome 3), thereby increasing RB-E2F interaction and halting the cell cycle at G1/S boundary (Kashuba et al., 2004).
- It also inactivates RNA polymerase-II by preferential dephosphorylation of 'Ser-5' within the tandem 7 residues repeats in the C-terminal domain (CTD) of the largest RNA polymerase II subunit, thus controlling the transcription machinery (hence called carboxy-terminal domain, RNA polymerase II, polypeptide A small phosphatase-like) (Yeo et al., 2003).
- Studies also suggest that CTDSPL/RBSP3 might function as a transcriptional co-repressor, inhibiting transcription of neuronal genes in non-neuronal cells (Yeo et al., 2005), and may also act as a phosphatase of Smad1, Smad2/Smad3 and Snail (Wu et al., 2009; Sapkota et al., 2006).

Homology
Chimpanzee, Rhesus monkey, dog, cow, mouse, chicken, zebrafish, S.cerevisiae, K.lactis, E.gossypii, S.pombe, M.oryzae, and N.crassa show conserved RBSP3 gene (Source NCBI homologene).

RBSP3 and miRNAs
1. miRNA 100
- RBSP3 is a bonafide target for miRNA 100.
- miRNA 100 binds to the 3'UTR of RBSP3 in regions conserved in humans, rats and mice.
- RBSP3 expression is inversely co-related with the expression of miRNA 100 in 76.5% AML cases.
2. miRNA 26a (has-miR-26a-1)
- miRNA 26a resides in the intron of RBSP3.
- It is concomitantly expressed with RBSP3 during the cell cycle.
Different organisms showing homology in RBSP3 protein.

Interacting proteins of RBSP3, using String network.

Mutations

Germinal
None reported.

Implicated in

Cervical cancer

Note
- High deletion (48%, 45% cases) and methylation (26%, 25% cases) was seen in CIN and CACX respectively (Mitra et al., 2010).
- Reduced mRNA expression was seen in CACX (Mitra et al., 2010).
- RBSP3B (larger, active isoform) was under-expressed in CACX (Mitra et al., 2010).
- In HPV infected cervical cancer, high deletion (42% cases) was observed, with significant variation (p<0.05) between metastatic (64%) and non-metastatic (32%) cases (Anedchenko et al., 2007).
- Altogether, copy number change was seen in 51% cases (Anedchenko et al., 2007).
- Decreased expression was seen in 64% cases, with significant difference between metastatic (83%) and non-metastatic (52%) cases (Anedchenko et al., 2007).
- Increase in expression was also observed in some cases (Anedchenko et al., 2007).
- Altogether, change in expression was in 79% of cases (Anedchenko et al., 2007).

Prognosis
RBSP3 alterations (deletion, methylation) were significantly associated with poor patient outcome and posed 4.5-13 times risk of survival (Anedchenko et al., 2007).
Oncogenesis
Inactivation of RBSP3 was an early event in cervical carcinogenesis (Mitra et al., 2010).

Breast cancer

Note
- Study population was divided into two groups, Group A (≤40 yrs, early onset) and Group B (>40 yrs, late onset) (Sinha et al., 2008).
- High deletion (30%, 24% cases) and methylation (38%, 32% cases) were observed in Groups A and B respectively (Sinha et al., 2008).
- 28.9 ± 39.1 fold reduction in expression of RBSP3 was observed in about 33 - 40% of the tumors (Sinha et al., 2008).
- Homozygous deletion (10-18%) was observed for RBSP3 (Senchenko et al., 2004).

Prognosis
Patients belonging lower to age of onset (≤40 yrs) with alterations of RBSP3 had poor disease outcome (Sinha et al., 2008).

Oncogenesis
Higher alterations of RBSP3 were observed in patients belonging to the lower age of onset (Group A) (Sinha et al., 2008).

Acute lymphoid leukemia (ALL)

Note
Promoter methylation was seen in RBSP3 in 24% of ALL patients.

Prostate cancer

Note
GWAS study using Affymetrix 100K SNP GeneChip with GEE model showed that the SNP, rs9311171 (G/ T), located within RBSP3, had a notable GEE p value (1.8x 10^-6).

Oncogenesis
GEE p value 1.8x 10^-6 indicates that this SNP within RBSP3 plays a role in tumor progression.

Non - small cell lung cancer (NSCLC)

Note
- Reduction of expression of RBSP3 was obtained for both adenocarcinoma (AC) and squamous cell carcinoma (SCC) (Senchenko et al., 2008).
- Downregulation was both genetic and epigenetic (Senchenko et al., 2008).
- For ACs, decrease in level of expression was in 88% cases and 70% cases of metastatic and non-metastatic tumors respectively, whereas for SCCs, it was in 88% cases for both metastatic and non-metastatic tumors (Senchenko et al., 2008).
- Decrease in mRNA in ACs was due to deletion (25% cases) and promoter methylation (38% cases), whereas for SCCs, it was in 30% and 80% cases for deletion and methylation respectively (Senchenko et al., 2008).
- Fold decrease in expression of RBSP3 in AC and SCC was 78% and 88% respectively, with overall 85% decrease in expression of RBSP3 in NSCLC (Senchenko et al., 2010).

Oncogenesis
Deletion and methylation of promoter of RBSP3 are responsible for reduction in expression of the protein and play important roles in progression of NSCLC (Senchenko et al., 2008).
Reduction of expression of RBSP3 is required for development of lung adenocarcinomas (Senchenko et al., 2010).

Ovarian cancer

Note
Deletion/Methylation of RBSP3 were observed in 33% cases.

Oncogenesis
RBSP3 deletion/methylation can be used as a biomarker for ovarian cancer in combination with other studied markers.

Head and neck squamous cell carcinoma (HNSCC)

Note
- Deletion of RBSP3 in dysplasia and HNSCC was in 24% and 32% cases respectively (Ghosh et al., 2010).
- Promoter methylation was observed in 39% and 38% cases of dysplasia and HNSCC samples respectively (Ghosh et al., 2010).
- Fold reduction of mRNA in the tumors was 33.6 ± 9.4 (Ghosh et al., 2010).
- While normal tissues expressed the larger RBSP3 B form, tumors either showed no expression of RBSP3, or preferentially expressed the smaller, less active form, RBSP3 A (Ghosh et al., 2010).
Expression of RBSP3 decreases from pre-malignant to malignant lesions (Maiti et al., 2012).
Expression of RBSP3 was seen to be increased from pre-neoadjuvant chemotherapy tumors to post-therapy tumors (Sarkar et al., 2013).

Prognosis
Patients with RBSP3 alterations show poor survival (Ghosh et al., 2010).

Oncogenesis
Early alteration of RBSP3 takes place in head and neck cancers (Ghosh et al., 2010).
Loss of expression of RBSP3 was seen to be required for progression from malignant to invasive cancer (Maiti et al., 2012).
Regain of expression of RBSP3 in post-therapy tumors may be one of the reasons of shrinkage of tumors due to neoadjuvant chemotherapy (Sarkar et al., 2013).
Lung, renal, breast, cervical and ovarian cancers

Note
High frequencies of somatic mutations in RBSP3 in different cancers suggesting it may underlay the mutator phenotype of cancer.

Acute myeloid leukemia (AML)

Note
RBSP3 might have a crucial role in myeloid cell differentiation towards granulocyte/monocyte lineages through pRb-E2F pathway.

Hepatocellular carcinoma (HCC) in mouse model system

Note
RBSP3 shows increase in expression (RNA, protein) upon treatment with the chemopreventive agent Amarogentin.

Oncogenesis
Increase in expression of RBSP3 might play a role in chemoprevention upon treatment with amarogentin.

References

This article should be referenced as such:
Reduction of Proliferation and Induction of Apoptosis are Associated with Shrinkage of Head and Neck Squamous Cell Carcinoma due to Neoadjuvant Chemotherapy

Shreya Sarkar1, Guru Prasad Maiti1, Jayesh Jha2, Jaydip Biswas2, Anup Roy3, Susanta Roychoudhury4, Tyson Sharp5, Chinmay Kumar Panda1*

Abstract

Background: Neoadjuvant chemotherapy (NACT) is a treatment modality whereby chemotherapy is used as the initial treatment of HNSCC in patients presenting with advanced cancer that cannot be treated by other means. It leads to shrinkage of tumours to an operable size without significant compromise to essential oro-facial organs of the patients. The molecular mechanisms behind shrinkage due to NACT is not well elucidated.

Materials and Methods: Eleven pairs of primary HNSCCs and adjacent normal epithelium, before and after chemotherapy were screened for cell proliferation and apoptosis. This was followed by immunohistochemical analysis of some cell cycle (LIMD1, RBSP3, CDC25A, CCND1, cMYC, RB, pRB), DNA repair (MLH1, p53) and apoptosis (BAX, BCL2) associated proteins in the same set of samples.

Results: Significant decrease in proliferation index and increase in apoptotic index was observed in post-therapy tumors compared to pre-therapy. Increase in the RB/pRB ratio, along with higher expression of RBSP3 and LIMD1 and lower expression of cMYC were observed in post-therapy tumours, while CCND1 and CDC25A remained unchanged. While MLH1 remained unchanged, p53 showed higher expression in post-therapy tumors, indicating inhibition of cell proliferation and induction of apoptosis. Increase in the BAX/BCL2 ratio was observed in post-therapy tumours, indicating up-regulation of apoptosis in response to therapy.

Conclusions: Thus, modulation of the G1/S cell cycle regulatory proteins and apoptosis associated proteins might play an important role in tumour shrinkage due to NACT.

Keywords: Proliferation - apoptosis - neoadjuvant chemotherapy - head and neck squamous cell carcinoma

Introduction

Head and neck squamous cell carcinoma (HNSCC) is a major form of cancer in the Indian subcontinent, accounting for about 30-40% of all cancer types (Tripathi et al., 2003). Globally, it is the sixth most common cancer and ranks eighth in global cancer deaths (Shibuya et al., 2002), the global mortality rate being 6/100,000. The etiological factors include tobacco, betel nut and leaf quid, alcohol and HPV 16/18 infection (Koch et al., 1999).

Surgery is the most preferred and effective mode of treatment of HNSCC. For early lesions, surgery or radiation is recommended, whereas for advanced cases, surgery is recommended. However, only 10-15% of the patients present with early, localized disease, where a single modality of treatment is effective for cure (Sankaranarayanan, 1990). The majority of the cancers present late. Surgery in advanced HNSCC is often difficult, especially in India, due to lack of sufficient resources or expertise to cater to the needs for an overwhelming number of patients. In recent years, induction chemotherapy, also called neoadjuvant chemotherapy (NACT), followed by surgery is the choice of treatment for patients presenting with locally advanced, unresectable disease. The main aim is to reduce the tumor volume to an operable size before surgery and also to enable maximum preservation of oro-facial organs. However, the mechanism of tumor volume reduction is not well understood.

In HNSCC, differential gradation of tumors were evident from the proximal to the distal sites, i.e., less differentiated cells were more prevalent at the core of the tumor, whereas more differentiated cells were seen at the periphery (Slaughter et al., 1953). It seems that these differentiated tumor cells were affected more due to neoadjuvant chemotherapy.

In HNSCC tumor progression model, it was evident that inactivation of LIMD1 (associated with RB/E2F interaction) occurred in chronic ulcerative stage, followed by inactivation of RBSP3 (associated with dephosphorylation of RB at serine 807/811) in mild...
dysplastic stage. In addition, inactivation of CDC25A occurred at moderate dysplastic stage, followed by activation of CCND1 and cMYC in the later stages of tumor development (Sabbir et al., 2006; Ghosh et al., 2008; 2010a; 2010b; Bhattacharya et al., 2009). As a result, there was hyperphosphorylation of RB for progression of the cell cycle. On the other hand, inactivation of MLH1, a DNA repair protein and p53 occurred at mild dysplastic stage, indicating the impairment of DNA repair as an early event in the development of the tumor (Maiti et al., 2012). Bcl2, an anti-apoptotic protein, shows decrease in expression from mild dysplasia (Loro et al., 2002).

Thus to understand the molecular mechanism of tumor shrinkage in HNSCC due to NACT, we wanted to analyze the alterations of these genes in tumors before and after chemotherapy. For this reason, firstly we have analyzed proliferation and apoptosis in 11 pairs of pre- and post-therapy HNSCC tumors from the same patients, along with their respective adjacent normal tissues. Secondly, immunohistochemical analysis of the cell cycle regulatory, DNA repair and apoptosis associated genes were done in the same samples. Our data suggests that inhibition of cellular proliferation and induction of apoptosis might be the reason for tumor shrinkage.

Materials and Methods

Patient population and tumor tissues

Eleven (11) pairs of primary HNSCC and adjacent normal epithelium were collected from the same patients, both before and after neoadjuvant chemotherapy from the hospital section of Chittaranjan National Cancer Institute, Kolkata, India. All patients received 3 cycles of chemotherapy with Cisplatin and 5-Flourouracil in doses of 70-100 mg/m² and 1000 mg/m² B.S. A. respectively. Informed consent was obtained from the patients, as well as the hospital authorities and the institutional ethical committee had approved the study. All specimens, freshly obtained from punch biopsies or operated specimens, were fixed in 10% formalin for further work. All tumors were obtained from punch biopsies or operated specimens, were sectioned at 3-4μm and hematoxylin-eosin (HE) staining carried out. Stained slides were visualized under a light microscope and photographed, followed by grading of the tumors by two independent certified pathologists.

Determination of expression of proteins by Immunohistochemical analysis

Immunohistochemical analysis was performed by HRP method according to standard procedures (Ghosh et al., 2010). In brief, 4-5 μm paraffin sections were de-paraffinized in xylene, hydrated with decreasing grades of alcohol and finally PBS, antigen retrieved by heating in Citrate Buffer, pH 7.4 for 20 mins at 85°C and blocked with 3% BSA for 30 mins. Primary antibodies, used overnight in dilutions of 1:75 or 1:100 were LIMD1 (Rabbit polyclonal, CP-30-09) and RBSP3 (Rabbit polyclonal, CP-57-09) from Imgenix India Pvt. Ltd and CDC25A (Goat polyclonal IgG, sc-6947), MLH1 (Rabbit polyclonal IgG, sc-581), CCND1 (Mouse monoclonal IgG1, sc-246), cMYC (Mouse monoclonal IgG1, sc-40), RB (Rabbit polyclonal IgG, sc-7905), pRB (Rabbit polyclonal IgG, ser 807/811, sc-16670-R) and PCNA (Mouse monoclonal IgG 2a) from Santacruz Biotechnology. HRP-conjugated secondary antibodies, used in dilutions of 1:500 were rabbit anti-goat IgG (sc-2768), goat anti-rabbit IgG (sc-2004) and goat antimouse IgG (sc-2005) were also purchased from Santacruz Biotechnology, USA. 3', 3'diaminobenzidine (DAB) was used to develop the slides and hematoxylin was used as the counter stain. Scoring of slides was done by two independent observers, calculating the average of the percentage of immunopositive cells in 4 randomly chosen fields. For the scoring of the adjacent normal epithelium, expression in the basal layer was considered, both for the nucleus, as well as for the cytoplasm independently. Considering that the basal layer of the normal epithelium is the proliferation zone, expression in the tumors, both pre- and post-chemotherapy was compared to the expression in the basal layer in the corresponding normal specimens, pre- and post-chemotherapy respectively. Images were obtained by using a bright field microscope (Leica EC 3, Germany).

Determination of apoptosis by TUNEL assay

In situ apoptosis was determined by the Terminal

<p>| Table 1. Clinopathological Features of Head and Neck Lesions |</p>
<table>
<thead>
<tr>
<th>REGN. NO.</th>
<th>A/S</th>
<th>SITE</th>
<th>TOBACCO</th>
<th>STAGE</th>
<th>GRADE</th>
<th>RESPONSE (CT)</th>
<th>HPV 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>50/Male</td>
<td>L BM</td>
<td>Present</td>
<td>III</td>
<td>I</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>2098</td>
<td>38/Female</td>
<td>L CHK</td>
<td>Present</td>
<td>III</td>
<td>I</td>
<td>GOOD</td>
<td>Absent</td>
</tr>
<tr>
<td>2548</td>
<td>40/Male</td>
<td>L CHK</td>
<td>Present</td>
<td>III</td>
<td>I</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>3953</td>
<td>40/Male</td>
<td>R BM</td>
<td>Present</td>
<td>III</td>
<td>I</td>
<td>MODERATE</td>
<td>Present</td>
</tr>
<tr>
<td>3992</td>
<td>60/Female</td>
<td>L BM, ALV, RMT</td>
<td>Present</td>
<td>III</td>
<td>I</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>184</td>
<td>52/Male</td>
<td>L BM</td>
<td>Present</td>
<td>III</td>
<td>II</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>397</td>
<td>50/Male</td>
<td>R CHK</td>
<td>Present</td>
<td>III</td>
<td>II</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>3873</td>
<td>60/Male</td>
<td>LIP</td>
<td>Present</td>
<td>III</td>
<td>II</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>4108</td>
<td>35/Male</td>
<td>LOW LIP</td>
<td>Present</td>
<td>IV</td>
<td>II</td>
<td>NEGATIVE</td>
<td>Present</td>
</tr>
<tr>
<td>2598</td>
<td>52/Male</td>
<td>L CHK</td>
<td>Present</td>
<td>III</td>
<td>III</td>
<td>GOOD</td>
<td>Present</td>
</tr>
<tr>
<td>1485</td>
<td>40/Male</td>
<td>ALV</td>
<td>Present</td>
<td>IV</td>
<td>III</td>
<td>GOOD</td>
<td>Present</td>
</tr>
</tbody>
</table>

*aALV: Alveolus, BM: Buccal mucosa, CHK: Cheek, RMT: Retromolar trigone

Reduction of Proliferation and Induction of Apoptosis in Head and Neck SCCs with Chemotherapy

deoxynucleotidyl transferase (TdT) associated dUTP Nick End Labeling (TUNEL) Assay, utilizing a commercial in situ cell death detection peroxidase (POD) kit (Roche Molecular Biochemicals, Manheim, Germany). Following the manufacturer’s protocol, 4-5µm paraffin sections were initially deparaffinized and hydrated serially in xylene, descending grades of alcohol and PBS, permeabilized with 20µg/ml Proteinase K for 30 mins at 37°C and incubated with TUNEL reaction mixture for 60 mins at 37°C in a humidified chamber. The slides were washed with PBS and finally incubated with horseradish POD conjugated anti-fluorescein antibody and DAB as the chromogen for 30 mins at 37°C under humidified conditions. Stained slides were visualized and photographed under a bright field microscope (Manna et al., 2006).

Detection of HPV 16

HPV 16 was detected by immunohistochemical analysis of pre-treated tumors with HPV 16 E6 (goat polyclonal IgG, sc1584) antibody from Santacruz Biotechnology, USA according to the procedure stated above.

Statistical analysis

Results obtained were analyzed by Analysis of variance (ANOVA), followed by Tukey’s Test, with the help of Critical Difference (CD) or Least Significant Difference (LSD) at 5% (CD5) and 1% (CD1) level of significance. p values <0.05 and <0.01 were considered significant.

Results

Analysis of proliferation and apoptosis in tumors

The normal basal epithelium adjacent to the pre-therapy tumors showed high proliferative index (mean 92.92, SD±3.27), which did not change significantly in basal layer of post-therapy adjacent normal (mean 91.48, SD±4.0). However, the proliferation index in tumors significantly decreased from pre-therapy (mean 62.84, SD±20.96) to post-therapy (mean 32.76, SD±20.81, p<0.05) with 8/11 post therapy tumors showing >1.5 fold reduction in proliferation (Figure 1, 2).

Apoptotic index in basal layer pre-therapy adjacent normal was low (mean 3.17, SD±1.81) and did not change significantly post therapy (mean 5.34, SD±2.43). Pre-therapy, tumors did not show significant increase in apoptotic index compared to adjacent normal (mean 7.31, SD±3.27). However, there was significant increase in the same in tumors post therapy (mean 24.18, SD±14.04, p<0.01) with 6/11 tumors showing 1.5 fold or greater increase in apoptotic index (Figure 1, 3).

![Figure 1. Immunohistochemical Analysis of (A) Proliferation Index and (B) Apoptotic Index. 3992, 2598 represent sample numbers. N: Adjacent normal, T: Tumor, NCT: Adjacent normal after NACT, TCT: Tumor after NACT. Black arrows indicate the expression and location of the markers. Magnification: 20x, Scale bar: 50µm](image1)

![Figure 2. Graphical Representation of Proliferation Index and Percentage of cells Showing Nuclear Expression of Cell Cycle Associated Proteins in Tumors. T-B: Tumors before therapy, T-A: Tumors after therapy. Coloured symbols represent sample numbers. Yellow triangle represents mean of percentage of cells showing expression](image2)
Analysis of expression of cell cycle related proteins:

In basal epithelium of pre-therapy adjacent normal, RB showed moderate nuclear expression (mean 41.93, SD±17.36) whereas pRB showed nearly 2-fold high nuclear expression (mean 86.92, SD±7.63), with the pattern remaining similar post therapy (RB: mean 50.66, SD±15.38, pRB: mean 84.46, SD±7.25). This indicates that the high pRB expression is necessary for progression of cell cycle. Similarly, in pre-therapy tumors nearly 2.7-fold high expression of pRB (mean 53.03, SD±7.27) was seen than RB expression (mean 19.69, SD±11.92). On the contrary, in post-therapy tumors, nearly 1.8-fold decrease in pRB expression (mean 26.09, SD±6.63) was seen than RB expression (mean 47.32, SD±15.83). This suggests that there is a restriction of G1/S cell cycle checkpoint in post-therapy tumors (Figure 2, 4).

In case of LIMD1, high nuclear expression in adjacent basal epithelium was seen in both pre (mean 96.94, SD±1.97) and post therapy (mean 89.72, SD±11.93). However, significant reduction of its expression was evident in tumors of both pre therapy (mean 10.7, SD±4.75) and post therapy (mean 19.04, SD±14.29), with >1.5-fold increase in expression in 5/11 post-therapy tumors (Figure 2, 4).

Interestingly, low expression of RBSP3 was seen in normal basal epithelium of both pre (mean 3.91, SD±1.55) and post (mean 3.88, SD±0.98) therapy, indicating high expression of pRB. Similar pattern of RBSP3 expression was also evident in pre-therapy tumors (mean 5.9, SD±4.18). However, in post-therapy tumors, comparatively high expression of RBSP3 was seen (mean 7.28, SD±3.99) with >1.5 fold higher expression 5/11 post-therapy tumors (Figure 2, 7).

CDC25A showed high nuclear expression in adjacent basal epithelium in both pre (mean 95.55, SD±3.82) and post therapy (mean 92.12, ±SD4.07) and moderate reduction in expression in tumors both pre (mean 54.73, SD±9.7) and post chemotherapy (mean 49.07, SD±13.85) (Figure 2, 7).

In the analysis of cell cycle activator CCND1, moderate
nuclear expression was seen in adjacent basal epithelium in both pre (mean 47.92, SD±11.79) and post therapy (mean 47.44, SD±9.35) with comparable expression of the same in tumors of both pre (mean 38.71, SD±5.17) and post therapy (mean 39.48, SD±7.14). Similarly, moderate expression of cMYC was seen in adjacent basal epithelium of both pre (mean 45.52, SD±22.0) and post therapy (mean 45.09, SD±18.15), with the pattern remaining similar in tumors in both pre (mean 55.14, SD±17.03) and post (mean 43.21, SD±28.15) therapy, with >1.5 fold decrease in expression in 5/11 post therapy tumors (Figure 2, 7). This indicates that differential expression of cMYC and CCND1 expression occurs in post-therapy tumors.

Study of apoptosis related proteins:

It was evident that the level of expression of BAX and BCL2 was comparable in normal basal epithelium in both pre (BAX: mean 79.3, SD±9.58, BCL2: mean 85.79, SD±7.97) and post therapy (BAX: mean 78.56, SD±8.46, BCL2: mean 89.86, SD±4.3). In pre-therapy tumors, expression of both the proteins was comparatively low (BAX: mean 29.28, SD±13.36, BCL2: mean 34.98, SD±10.77). However, in post therapy, BAX showed high cytoplasmic expression (mean 53.43, SD±14.26) compared to BCL2 (mean 20.02, SD±9.49) with 1.5-fold higher expression of BAX and BCL2 in 9/11 and 9/11 post therapy tumors respectively (Figure 3, 5).

Study of protein associated with DNA repair:

High nuclear expression MLH1 was seen in adjacent basal epithelium in both pre (mean 88.59, SD±20.82)
and post therapy (mean 92.23, SD±2.13) with significant reduction in expression in tumors in both before (mean 20.82, SD±5.68) and after (mean 28.19, SD±5.62) therapy (Figure 6, 8). Similarly, high nuclear expression of p53 was evident in adjacent normal basal epithelium in both pre (mean 84.45, SD±8.0) and post therapy (mean 88.7, SD±9.15). However, increase in p53 expression was seen in post-therapy tumors (mean 43.39, SD±9.68) compared to pre-therapy (mean 22.64, SD±6.0) with >1.5-fold expression in 9/11 post therapy tumors (Figure 6, 8).

Discussion

In neoadjuvant chemotherapy using a combination of cisplatin and 5-fluorouracil as the first regimen, high response rates were obtained (Jacobs et al., 1987; Karp et al., 1991). In spite of the extensive use of this form of treatment in the current times, the molecular mechanism behind tumor shrinkage due to NACT remains elusive. Therefore, to decipher the mechanism of tumor shrinkage, our study focused on two main aspects-apoptosis and proliferation, perturbation of either or both of which may lead to decrease in tumor volume following therapy.

It was evident that in the tumors after neoadjuvant chemotherapy, there was significant decrease in proliferation index and increase in apoptotic index. To the best of our knowledge, similar kind of study was not reported in HNSCC. However Costa et al. (2001) showed that increase in apoptotic index and decrease in mitotic index and its associated markers in cervical cancer had a good prognosis after NACT. Similarly, in breast and gastric carcinomas, increase in apoptotic index was observed in post-therapy tumors (Tiezzi et al., 2006; Jia et al., 2012).

Significant increase in expression of RB and decrease in pRB was observed in majority of post-therapy tumors (6/11, 11/11 respectively) compared to pre-therapy. This shift in RB, pRB expression indicated a restriction of the cell cycle progression. This decrease in pRB expression might be due to the increase in RBSP3 expression in post therapy tumors than pre-therapy as concordance has been seen between RBSP3 and pRB expression. Similar pattern of expression was also seen for LIMD1, indicating an increase in RB-E2F interaction. Additionally, we have not seen any significant changes in expression pattern of CCND1 in pre and post therapy tumors. This indicates that RBSP3 and LIMD1 might have synergistic effect in restriction of the cell cycle in post-therapy tumors, suggesting their prognostic importance. Similar data has not yet been reported. However, increase in RBSP3 and LIMD1 expression, along with down-regulation of pRB expression has been reported in chemoprevention of liver carcinogenesis in mouse by amarogentin (Pal et al., 2012). On the other hand, reduced expression of cMYC in some post-therapy tumors (5/11) indicates the importance of this gene in inhibition of cell proliferation.

The insignificant change in expression of MLH1 in post-therapy tumors compared to pre-therapy indicates that mismatch repair pathway might not be associated with response to NACT. On the other hand, up-regulation of p53 in post-therapy tumors (9/11) than pre-therapy suggests the importance of this gene in inhibition of cell proliferation and induction of apoptosis. Interestingly, concordance has been seen with HPV16 prevalence and p53 up-regulation in the tumors. It seems that in HPV positive tumors, at least one of the p53 alleles is in wild type state and its up-regulation might activate the G1/S checkpoint, along with induction of apoptosis of the differentiated cells, as evident from previous studies (Sultana et al., 2003; Mitra et al., 2007). This induction might be due to the up-regulation of BAX by p53, as concordance has been seen between expressions of these proteins in post-therapy tumors.

On the other hand, decrease in BCL2 expression in majority of the post-therapy tumors (9/11), resulting in increase in BAX/BCL2 ratio suggests the association of the intrinsic pathway of apoptosis in shrinkage of tumors. The association of BAX/BCL2 in response to NACT has been reported in different tumors including HNSCC (Matsumoto et al., 2004).

Thus, from the study, it can be concluded that the tumor shrinkage due to NACT is due to the synergistic effect of reduction of cell proliferation and induction of apoptosis. The restriction of cellular proliferation is mainly due to blockage of the G1/S cell cycle checkpoint by up-regulation of RB/pRB ratio and p53, and induction of apoptosis is due to increase in BAX/BCL2 ratio. However, more samples need to be analyzed in order to understand the detailed molecular mechanism of tumor shrinkage due to NACT.
Acknowledgements

The authors thank the Director of Chittaranjan National Cancer Institute, Kolkata, India, for his kind cooperation. Financial support for this work was provided by grants from Department of Biotechnology (BT/PR/5524/Med/14/649/2004), Government of India, to Dr CK Panda and Dr S Roychoudhury, Council of Scientific and Industrial Research-Project, New Delhi, India (IAP-001) to Dr. S. Roychoudhury, Council for Scientific and Industrial Research, Grant No. 09/030(0056)/2010 EMR-I to Shreya Sarkar. The authors also thank Dr. S. S. Mondal, Chittaranjan National Cancer Institute, Kolkata, for his kind cooperation in statistical analysis.

References