Contents

1. Introduction
 1.1. Breast Cancer Statistics 2
 1.2. Breast Cancer in India 3
 1.3. Background of Research 4
 1.4. Computer-Aided Diagnosis (CAD) 4
 1.5. Aim of this Research Work 4
 1.6. Objective of the thesis 7
 1.7. Innovative Elements in the Research 8
 1.8. Deliverables of the Research 10
 1.9. Targeted Beneficiaries 11
 1.10. Justification 12
 1.11. Structure of the Thesis 12
 1.11.1 Digital Mammogram Analysis 13
 1.11.1.1 Detection Method 13
 1.11.1.2 Future Risk Prediction Methods 14
 1.11.2 Histopathological Slide Analysis 15
 1.12. Quantitative Analysis 16
 1.13. Conclusion 19

2. Breast Cancer and Mammogram CAD System
 2.1. Introduction 20
 2.2. Human Breast 21
 2.3. Breast Anatomy 22
 2.4. Breast Cancer 23
 2.5. Breast Cancer - Facts and Figures 24
 2.6. Breast cancer – Signs and Symptoms 27
2.7. Breast Cancer – Diagnosis

2.8. Mammography

2.8.1. Technology

2.8.2. Screen Film Mammography

2.8.3. Digital Mammography

2.8.4. Mammographic Projection

2.9. Mammogram Screening Programme

2.10. Computer Aided Diagnosis (CAD)

2.10.1. Mammogram CAD Development

2.10.2. Contemporary Academic Initiatives on Mammogram CAD

2.10.3. Commercial Viability of Mammogram CAD

2.11. Conclusion

3. Previous Research Review

3.1. Introduction

3.2. Mammographic CAD system

3.2.1. Preparation

3.2.2. Pre-processing

3.2.2.1. Image Registration

3.2.2.2. Image Enhancement

3.2.2.3. Image Segmentation

3.2.3. Feature Extraction and Decision Making

3.2.4. Breast Cancer Risk Markers

3.3. Histopathological CAD for biopsy slide analysis

3.3.1. Histopathological Noise reduction

3.3.2. Histopathological Cell segmentation

3.3.3. Feature Extraction

3.3.4. Features Selection and Diagnosis

3.4. Conclusion

4. Dataset

4.1. Introduction

4.2. Standardisation

4.3. Experimental Datasets

4.4. Mammographic Datasets
5. Preparation of Digital Mammogram for CAD
5.1. Introduction 68
5.2. Literature Review 69
5.3. Proposed Methods 70
5.3.1. External Artefact Removal 71
5.3.2. Image Orientation 75
5.3.3. Noise Suppression 78
5.4. Experimental Results 80
5.5. Quantitative Analysis 81
5.6. Conclusion 84

6. Digital Mammogram Registration and Edge Detection
6.1. Introduction 85
6.2. Literature Review 87
6.2.1. Mammogram Registration 87
6.2.2. Edge Detection 88
6.2.2.1. Gradient Edge Detectors (First Derivative or Classical) 89
6.2.2.2. Second – Order derivative Method 92
6.3. Proposed Methods 94
6.3.1. Determination of Maximum Distance Threshold (MDT) 95
6.3.2. Divide and Conquer Homogeneity Enhancement Algorithm 99
6.3.3. Determination Central Tendency 101
6.3.4. Edge Detection Algorithm (EDA) 104
6.4. Experimental Results 107
6.5. Quantitative Analysis 109
6.5.1. Comparative Analysis of Edge Detection Algorithms 111
6.6. Conclusion 116
7. **Isolation and Suppression of Pectoral Muscle in Digital Mammogram**

7.1. **Introduction**

7.2. **Region Growing**

7.3. **Literature review**

7.3.1. **Region Based Method**

7.3.2. **Edge Based Method**

7.4. **Proposed Methods**

7.4.1. **Modified Seeded Region Growing Algorithm (MSRGA)**

7.4.1.1. Define Rectangle to Isolate Pectoral Muscle from ROI

7.4.1.2. Suppression of Pectoral Muscle

7.4.2. **Edge Based Method**

7.5. **Experimental Results**

8. **Accurate Breast Contour Detection Algorithms in Digital Mammogram**

8.1. **Introduction**

8.2. **Literature Review**

8.3. **Proposed Methods**

8.3.1. **Breast Boundary Detection Algorithm (BBDA)**

8.3.2. **Breast Boundary Smoothing Algorithm (BBSA)**

8.4. **Experimental Result**

8.4.1. **Experiment 1: Fatty Tissue**

8.4.2. **Experiment 2: Fatty Fibro-Glandular Tissue**
11.3.4. Anatomical Segmentation of Breast Pair within ROI 226
11.3.5. Anatomy based Asymmetry Detection 227
11.4. Experimental Results 228
11.4.1. Morphology Based Asymmetry 228
11.4.2. Anatomy Based Asymmetry 230
11.5. Quantitative Analysis 233
11.5.1. Morphological Asymmetry Analysis 233
11.5.2. Anatomical Asymmetry Analysis 235
11.5.3. ROC Analysis 241
11.5.4. Comparative Analysis 243
11.6. Conclusion 244

12.1. Introduction 245
12.2. Literature Review 246
12.3. Proposed Methods 248
12.3.1. Isolation of Breast Region of Interest 249
12.3.2. Calculation of ROI Measurement 249
12.3.3. Proposed Elliptical Paraboloid Model 251
12.3.4. Formulation to Determine the Breast Volume 254
12.4. Experimental Results 256
12.5. Quantitative Analysis 258
12.5.1. Accuracy Estimation 259
12.5.2. Comparative Study 259
12.6. Conclusion 261

13.1. Introduction 263
13.2. ACR BI-RADS Breast Density Scale 263
13.3. Literature Review 265
13.4. Proposed Method 266
13.4.1. Segmentation by Progressive Elimination 267
13.4.2. Classification of Density 275
13.5. Experimental results 275
13.6. Quantitative Analysis 279
13.6.1. Accuracy Estimation 279
13.6.2. Statistical Estimation 280
13.6.3. Comparative Study 281
13.7. Conclusion 282

14.1. Introduction 284
14.2. Histology of Breast Cancer 285
14.2.1. Biopsy 288
14.2.2. Digital Diagnosis of Histopathological Slides 290
14.3. Literature Review 292
14.4. Proposed Method 294
14.4.1. Grey Scale Conversion 294
14.4.2. Colour Polarisation 296
14.5. Experimental Result 298
14.6. Conclusion 300

15. Summary
15.1 Contributions 303
15.2 Application 306
15.3 Future Scope 307
15.4 Conclusion 308

Bibliography 310

Publications 344