Contents

Preface
Acknowledgement

<table>
<thead>
<tr>
<th>Chapter 1</th>
<th>1-54</th>
</tr>
</thead>
<tbody>
<tr>
<td>General Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Preamble</td>
<td>1</td>
</tr>
<tr>
<td>1.2 General Background Information</td>
<td></td>
</tr>
<tr>
<td>A. Brief survey on the synthesis of Schiff-bases</td>
<td>2</td>
</tr>
<tr>
<td>B. Brief survey on the synthetic analogues of:</td>
<td></td>
</tr>
<tr>
<td>(i) Catechol oxidase</td>
<td>4</td>
</tr>
<tr>
<td>(ii) Cytochrome P-450</td>
<td>24</td>
</tr>
<tr>
<td>(iii) Phosphatase</td>
<td>29</td>
</tr>
<tr>
<td>1.3 DNA Cleavage Studies</td>
<td>33</td>
</tr>
<tr>
<td>1.4 Heterogenization of Homogeneous Catalyst</td>
<td>35</td>
</tr>
<tr>
<td>1.5 Aim and scope of the work</td>
<td>40</td>
</tr>
<tr>
<td>1.5 Summary of the Thesis</td>
<td>41</td>
</tr>
<tr>
<td>References</td>
<td>44</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter 2</th>
<th>55-94</th>
</tr>
</thead>
<tbody>
<tr>
<td>Syntheses, Characterization and Catecholase-like Activity of Mononuclear Ni(II) Complexes of 2-[(2-piperazin-1-yl-ethylimino)-methyl]phenol</td>
<td></td>
</tr>
<tr>
<td>Abstract</td>
<td>55</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>57</td>
</tr>
<tr>
<td>2.2 Experimental Section</td>
<td></td>
</tr>
<tr>
<td>2.2.1 Physical Methods and Materials</td>
<td>58</td>
</tr>
<tr>
<td>2.2.2 Syntheses</td>
<td>59</td>
</tr>
<tr>
<td>2.2.3 Detection of hydrogen peroxide in the catalytic reactions</td>
<td>60</td>
</tr>
<tr>
<td>2.2.4 X-ray crystal structure analysis</td>
<td>60</td>
</tr>
<tr>
<td>2.2.5 Potentiometric Titration</td>
<td>61</td>
</tr>
<tr>
<td>2.2.6 Theoretical Methods</td>
<td>62</td>
</tr>
<tr>
<td>2.3 Results and Discussion</td>
<td></td>
</tr>
<tr>
<td>2.3.1 Syntheses and Characterization</td>
<td>62</td>
</tr>
</tbody>
</table>
Chapter 4A 128-159

Heterogenization of Three Homogeneous Catalysts: Syntheses, Characterization and Comparative Study as Epoxidation Catalyst

Abstract 128

4A.1 Introduction 130

4A.2 Experimental Section
- 4A.2.1 Physical Methods and Materials 131
- 4A.2.2 Syntheses 132
- 4A.2.3 Epoxidation study of catalysts 134
- 4A.2.4 X-ray data collection and structure determination 135

4A.3 Results and Discussion
- 4A.3.1 Preparation and characterization of homogenous catalysts 136
- 4A.3.2 Description of structure of HmC-2 140
- 4A.3.3 Preparation and characterization of heterogeneous catalysts 141
- 4A.3.4 Catalytic epoxidation of alkenes by homogenous catalysts 148
- 4A.3.5 Epoxidation of alkenes by heterogeneous catalysts 152
- 4A.3.6 Probable reaction pathways 153
- 4A.3.7 Reusability of the heterogeneous catalysts 156

4A.4 Conclusions 156

4A.5 References 157

Chapter 4B 160-180

Syntheses, Characterization and Olefin Epoxidation Study of Alumina-supported Mn(III) and Fe(III)-Schiff Base Complexes

Abstract 160

4B.1 Introduction 161

4B.2 Experimental Section
- 4B.2.1 Physical Methods and Materials 163
- 4B.2.2 Syntheses of the complexes 163
- 4B.2.3 Syntheses of the catalysts 164
- 4B.2.4 Preparation of iodosylbenzene 164
- 4B.2.5 Ct-I and Ct-II catalyzed alkene epoxidation 164

4B.3 Results and Discussion
- 4B.3.1 Synthesis procedure and characterization 165
4B.3.2 Epoxidation of alkenes by catalysts (Ct-I and Ct-II) 170
4B.3.3 Control experiment 173
4B.3.4 Epoxidation with PhIO or TBHP 173
4B.3.5 Probable reaction pathways 174
4B.3.6 Reusability of the catalysts 175
4B.3.7 Characterization of regenerated catalysts 176

4B.4 Conclusions 178

4B.5 References 178

Chapter 5 181-212

Syntheses, Characterization and Catalytic Activities of Zn(II) Complexes of Phenol based Tridentate Schiff-base Ligands

Abstract 181

5.1 Introduction 182

5.2 Experimental Section 183

5.2.1 Physical Methods and Materials 183
5.2.2 Syntheses 184
5.2.3 X-ray crystal structure analysis 184
5.2.4 Kinetic Measurements of the Hydrolysis of 4-NPP in MeOH-water (7:3 v/v) 185
5.2.5 DNA cleavage activity 186
5.2.6 Theoretical Methods 186

5.3 Results and Discussion 187

5.3.1 Synthesis and characterization 187
5.3.2 Crystal structure description of the complexes 189
5.3.3 Phosphatase activity 193
5.3.4 Kinetic studies 195
5.3.5 DNA cleavage activity 200
5.3.6 DFT Study 203

5.4 Conclusions 209

5.5 References 210
Chapter 6

Syntheses, Characterization, catalytic activity and Photophysical Properties of Phenol based “End-off” Compartmental Ligand Complexes of Zn(II), Cd(II) and Hg(II)

Abstract

6.1 Introduction

6.2 Experimental Section

6.2.1 Physical Methods and Materials
6.2.2 Syntheses
6.2.3 X-ray data collection and structure determination
6.2.4 Photophysical Properties
6.2.5 Phosphatase Activities and Kinetics Studies

6.3 Results and Discussion

6.3.1 Syntheses and Characterization of complexes
6.3.2 Description of the crystal structures of complexes
6.3.3 Photophysical study of complexes
6.3.4 Phosphatase Activity
6.3.5 Thermal study

6.4 Conclusions

6.5 References

Chapter 7

Highlights

APPENDIX-A

List of Publications

iii

APPENDIX-B

Reprints of the Published Papers included in the Thesis