1. Introduction

2. Review of literature
 2.1 Microbes as sources of enzymes
 2.2 Microorganisms producing enzymes
 2.3 Proteases
 2.3.1 Serine proteases
 2.3.2 Aspartic proteases
 2.3.3 Cysteine proteases
 2.3.4 Metalloproteases
 2.4 Keratinases
 2.5 Keratin
 2.5.1 Sources of keratinases
 2.5.2 Screening and isolation of keratinolytic bacteria
 2.5.3 Screening and isolation of keratinolytic fungi
 2.6 Methods of enzyme production
 2.6.1 Submerged fermentation
 2.6.1.1 Keratinase production by SmF using fungi
 2.6.1.2 Factors influencing keratinase production by SmF using fungi
 2.6.1.3 Substrate
 2.6.1.4 Feather keratin
 2.6.1.5 Hair keratin
2.11.4 In leather industry

2.11.5 Depilation process in wool processing

2.11.6 Therapeutic uses

2.11.7 Production of films, coatings and glues

2.11.8 Production of animal feed

2.11.9 For aminoacid production

2.11.10 As detergent

2.11.11 For biofuel production

2.11.12 For prion degradation

2.11.13 Indicators of hydrocarbon contamination and bioremediation

2.11.14 For the production of mosquitocidal toxins

2.11.15 Silk degumming

2.11.16 Scale removal from wool fibre

2.11.17 Other potential applications of keratinolytic proteases

3. Screening of Fungus by Submerged fermentation

3.1 Section A - Screening fungal isolates for keratinase production by submerged fermentation and optimization of conditions for production

3.1.1 Collection of soil samples

3.1.2 Isolation of fungi

3.1.3 Examination of keratinolytic property of fungus

3.1.4 Selection of high yielding strain

3.1.5 Preparation of feather keratin substrate
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1.6</td>
<td>Preparation of feather keratin medium</td>
<td>48</td>
</tr>
<tr>
<td>3.1.7</td>
<td>Inoculum preparation</td>
<td>48</td>
</tr>
<tr>
<td>3.1.8</td>
<td>Inoculation and incubation</td>
<td>49</td>
</tr>
<tr>
<td>3.1.9</td>
<td>Enzyme assay</td>
<td>49</td>
</tr>
<tr>
<td>3.1.10</td>
<td>Identification of fungus</td>
<td>50</td>
</tr>
<tr>
<td>3.1.10.1</td>
<td>Microscopic morphology</td>
<td>50</td>
</tr>
<tr>
<td>3.1.10.2</td>
<td>Slide culture of fungus</td>
<td>50</td>
</tr>
<tr>
<td>3.1.10.3</td>
<td>Lactophenol cotton blue staining</td>
<td>50</td>
</tr>
<tr>
<td>3.1.10.4</td>
<td>Molecular identification</td>
<td>51</td>
</tr>
<tr>
<td>3.1.10.4.1</td>
<td>Isolation of genomic DNA</td>
<td>51</td>
</tr>
<tr>
<td>3.1.10.4.2</td>
<td>Molecular identification of fungal isolate</td>
<td>51</td>
</tr>
<tr>
<td>3.1.10.4.3</td>
<td>Purification of PCR amplified product</td>
<td>52</td>
</tr>
<tr>
<td>3.1.10.4.4</td>
<td>Sequencing of the purified PCR product</td>
<td>52</td>
</tr>
<tr>
<td>3.1.10.4.5</td>
<td>Sequence alignment and BLAST search</td>
<td>53</td>
</tr>
<tr>
<td>3.1.11</td>
<td>Stability of high yielding strains</td>
<td>53</td>
</tr>
<tr>
<td>3.1.12</td>
<td>Results</td>
<td>54</td>
</tr>
<tr>
<td>3.1.12.1</td>
<td>Selection of high yielding strains</td>
<td>54</td>
</tr>
<tr>
<td>3.1.12.2</td>
<td>Identification of high yielding fungi</td>
<td>55</td>
</tr>
<tr>
<td>3.1.12.3</td>
<td>Molecular Identification of the selected fungus</td>
<td>58</td>
</tr>
<tr>
<td>3.1.12.4</td>
<td>Amplified ITS region in agarose gel</td>
<td>58</td>
</tr>
<tr>
<td>3.1.13</td>
<td>Stability of highest yielding strains</td>
<td>60</td>
</tr>
<tr>
<td>3.1.14</td>
<td>Discussion</td>
<td>61</td>
</tr>
</tbody>
</table>
3.2 Section B - Optimization of conditions for the production of keratinase under submerged fermentation

3.2.1. Materials and methods 63

3.2.1.1 Method of preparation of medium 63

3.2.1.2 Incubation period 63

3.2.1.3 Temperature 63

3.2.1.4 pH 64

3.2.1.5 Inoculum level 64

3.2.1.6 Effect of agitation on enzyme production 64

3.2.1.7 Supplementary carbon sources 64

3.2.1.8 Supplementary nitrogen sources 64

3.2.1.9 Effect of surfactants 65

3.2.2 Results 65

3.2.2.1 Effect of incubation period 65

3.2.2.2 Incubation temperature 66

3.2.2.3 pH level 66

3.2.2.4 Inoculum level 67

3.2.2.5 Effect of agitation 69

3.2.2.6 Effect of carbon sources 69

3.2.2.7 Effect of nitrogen sources 70

3.2.2.8 Effect of surfactants 72

3.2.3 Discussion 73
4. Screening and selection of fungus for keratinase production by solid state fermentation

4.1 Section A - Screening and selection of fungus for keratinase production by solid state fermentation and optimization of conditions of SSF and formulation of low cost medium for the production of keratinase by *Aspergillus flavus* S125

4.1.1. Materials and methods

4.1.1.1 Fungal strains

4.1.2 Preliminary SSF studies

4.1.2.1 Inoculation & incubation

4.1.2.2 Extraction of enzyme

4.1.2.3 Measurement of dry weight of mouldy substrate

4.1.2.4 Identification of high yielding isolate

4.1.2.5 Detailed SSF studies

4.1.3 Results

4.1.3.1 Preliminary SSF studies

4.1.3.2 Detailed SSF studies

4.1.4 Discussion

4.2 Section B - Optimization of conditions of solid state fermentation and formulation of a low cost medium for the production of keratinase by *Aspergillus flavus* S125

4.2.1 Materials and methods

4.2.1.1 Solid substrates

4.2.1.2 Particle size
4.2.1.3 Moisture content, incubation temperature and incubation period 86
4.2.1.4 pH of moistening agents 86
4.2.1.5 Supplementary carbon sources 86
4.2.1.6 Supplementary nitrogen sources 87
4.2.1.7 Media volume: flask volume 87
4.2.2 Formulation of production medium 87
4.2.2.1 Feather substrate 87
4.2.2.2 Preparation of moistening solution 87
4.2.2.3 Culture medium and conditions 87
4.2.2.4 Study of feather degradation 88
4.2.2.5 Change in pH 88
4.2.2.6 Substrate degradation (%) 88
4.2.3 Results 89
4.2.3.1 Effect of solid substrates 89
4.2.3.2 Effect of particle size 89
4.2.3.3 Effect of moisture content, temperature of incubation & incubation period 90
4.2.3.4 Effect of pH of the moistening solution 92
4.2.3.5 Effect of various supplementary carbon sources on enzyme production 92
4.2.3.6 Effect of nitrogen sources on enzymatic activity 93
4.2.3.7 Effect of inorganic nitrogen sources on enzyme production 94
4.2.3.8 Ratio of medium volume and flask volume 95
4.2.3.9 Feather degradation and enzyme production 95
4.2.3.10 Keratinolytic activity in the culture filtrate during feather degradation 95
4.2.3.11 Change in pH 96
4.2.4 Discussion 98

5. Purification of keratinase from *Aspergillus flavus* S125

5.1 Materials & methods 103
5.2 Crude enzyme 103
5.2.1 Extraction of crude enzyme 103
5.3 Purification of the enzyme 103
5.3.1 Ammonium sulfate precipitation 104
5.3.2 Dialysis 104
5.3.2.1 Ion exchange chromatography 104
5.3.2.2 Gel filtration chromatography 105
5.3.2 Electrophoretic methods 105
5.4 Results 106
5.4.1 Purification of keratinase 106
5.5 Discussion 109

6. Characterization of keratinase from *Aspergillus flavus* S125

6.1 Materials and methods 111
6.1.1 Effect of pH on enzyme activity 111
6.1.2 Effect of temperature on enzyme activity 111
6.1.3 Effect of inhibitors on activity 111
6.1.4 Effect of metal ions on activity 112
6.1.5 Effect of pH on stability 112
6.1.6 Effect of temperature on stability 112
6.1.7 Substrate concentration 112

6.2 Amplification of alk1 gene of alkaline protease from Aspergillus flavus S125 113
6.2.1 DNA extraction 113
6.2.2 Detection of alk gene by PCR 113

6.3 Results 114
6.3.1 Effect of pH on enzyme activity 114
6.3.2 Effect of temperature on enzyme activity 115
6.3.3 Effect of inhibitors 116
6.3.4 Effect of various metal ions on enzyme activity 116
6.3.5 pH stability 117
6.3.6 Temperaturrs stability 118
6.3.7 Substrate concentration 119

6.4 Amplification of alkaline protease gene from Aspergillus flavus (ALK1) gene 120

6.5 Discussion 124

7. Dehairing of cattle hide by keratinase enzyme of Aspergillus flavus S125 128
7.1 Materials and methods 128
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1.1</td>
<td>Cattle skin</td>
<td>128</td>
</tr>
<tr>
<td>7.1.2</td>
<td>Crude enzyme</td>
<td>128</td>
</tr>
<tr>
<td>7.1.3</td>
<td>Enzymatic dehairing process</td>
<td>128</td>
</tr>
<tr>
<td>7.1.4</td>
<td>Effect of pH</td>
<td>129</td>
</tr>
<tr>
<td>7.1.5</td>
<td>Chemical process of dehairing</td>
<td>129</td>
</tr>
<tr>
<td>7.1.6</td>
<td>Scanning electron microscopy</td>
<td>129</td>
</tr>
<tr>
<td>7.1.7</td>
<td>Collagenolytic activity</td>
<td>130</td>
</tr>
<tr>
<td>7.2</td>
<td>Results</td>
<td>130</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Enzymatic dehairing</td>
<td>130</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Effect of different pH of enzyme on dehairing</td>
<td>132</td>
</tr>
<tr>
<td>7.2.3</td>
<td>Chemical dehairing</td>
<td>133</td>
</tr>
<tr>
<td>7.2.4</td>
<td>Collagenolytic activity</td>
<td>134</td>
</tr>
<tr>
<td>7.2.5</td>
<td>Scanning electron microscopy</td>
<td>134</td>
</tr>
<tr>
<td>7.3</td>
<td>Discussion</td>
<td>136</td>
</tr>
</tbody>
</table>

8. **Summary and conclusion** 139

9. **References** 145

10. **Appendix** 181