CONTENT

PART I

INTRODUCTION

1.1 Historical perspective
1.2 Mycobacteria
1.3 Cell wall of mycobacteria
1.4 Mycobacterial genome
1.5 Mycobacterial antigens
1.5.1 Carbohydrate antigens
1.5.1.1 Arabinomannans and lipoarabinomannans
1.5.2 Lipid antigens of mycobacteria
1.5.2.1 Trehalose-containing lipo oligosaccharides
1.5.3 Phenolic glycolipids and species specific antigens
1.5.4 Glycopeptidolipids
1.5.5 Proteins antigens
1.6 Immunity in Tuberculosis
1.6.1 The role of antibodies
1.6.2 The role of T-cell (CMI)
1.7 Diagnosis of Tuberculosis
1.8 Immunoprophylaxis and chemotherapy
PART II

MATERIALS AND METHODS

2.1 Materials
2.2 Methods
2.2.1 Maintenance of mycobacterial strains
2.2.2 Preparation of L.J. Slants
2.2.3 Ziehl-Neelsons staining of mycobacteria
2.2.4 Growth of mycobacteria
2.2.5 Harvesting of cells
2.2.6 Preparation of cell lysates
2.2.7 Preparation of cell wall fraction
2.2.8 Phase separation using Triton X-114
2.2.9 Immunization
2.2.9.1 Generation of rabbit anti \textit{M. smegmatis} and \textit{M. tuberculosis} sera
2.2.9.2 Isolation of serum from blood sample
2.2.9.3 Generation of mouse monospecific anti \textit{M. smegmatis} antibodies
2.2.9.4 Human sera
2.2.10 Immunoprecipitation
2.2.10.1 Activation of Sepharose CL4B beads
2.2.10.2 Coupling of serum immunoglobulin to activated Sepharose-4B beads
2.2.10.3 Iodination of mycobacteria antigens
2.2.10.4 Immunoprecipitation of radiolabelled antigen
2.2.11 Enzyme linked immunosorbent assay (ELISA)
2.2.12 SDS-PAGE
2.2.13 Western bloting
2.2.14 Dot Immuno Assays
2.2.15 Two-dimensional (2-D) gel electro-phoresis
2.2.15.1 Buffers and solutions
2.2.15.2 Sample preparation
2.2.15.3 First dimension (IEF)
2.2.15.4 Second dimension (SDS-PAGE)
2.2.15.5 Gel staining drying and autoradiography
2.2.15.6 Measurement of pH gradient
2.2.15.7 Western blot of 2-D gels
2.2.16 Isolation of DNA
2.2.17 Nucleic acid hybridization
2.2.17.1 Loading of DNA samples
2.2.17.2 DNA labeling
2.2.17.3 DNA hybridization
2.2.18 Protein and DNA estimation

PART III

RESULTS

3.1 SDS-PAGE analysis of total cell extract from six different species of mycobacteria
3.2 Western blot analysis of proteins from different species of mycobacteria
3.3 Cross-reactivity of different antigens
3.4 Western blot analysis of soluble fraction
3.5 Western blot analysis of cell wall fraction
3.6.1 Generation of monospecific polyclonal antibodies
3.6.2 ELISA using constant antigen concentration and varying dilution of antibodies
3.6.3 ELISA using different antibodies under native condition
3.6.4 ELISA using different antibodies with denatured antigens
3.6.5 Western blot analysis using antibody 1
3.6.6 Immunoprecipitation using monospecific antibodies
3.7 Cross-reactivity of patient sera
3.8 Antigenic analysis using 2-D electrophoresis
3.8.1 2-D analysis of antigens of different species of mycobacteria
3.8.2 2-D Western blot analysis using polyclonal antibodies
3.9 DNA hybridization
PART IV

DISCUSSION

4.1 Characterization of mycobacterial antigens
4.2 Immunochemical characterization of antigens of different species of mycobacteria using AMS and AMT
4.3 Characterization of antigens using patient sera
4.4 Immunochemical characterization and identification of antigen of different mycobacterial species using monospecific antibodies
4.5 Antigenic characterization of cell extract of different species using 2-D electrophoresis
4.6 DNA hybridization analysis of different species of mycobacteria

PART V

SUMMARY

PART VI

REFERENCES