DISCUSSION
The present study was taken up with an intention to find out the causes of lymphadenitis in two species of small ruminants, sheep and goat, which are usually reared for meat, wool and rarely for milk purposes.

As has been pointed out in the beginning of review of literature, the subject itself, i.e., lymphadenitis caused by various etiological agents, has received very little attention and has been dealt only in connection with general diseases. As such, it would be rather little bit difficult to compare the findings and observations so far been made under the study with those of earlier workers. Materials obtained for the study were from apparently healthy sheep and goats; whereas those of earlier workers from diseased animals.

However, when submaxillary, prescapular, bronchial and mesenteric lymph nodes were examined in 2,350 sheep and 15,785 goats within the period of the study, no less than 16.17% and 24.29% were found to have gross lesions indicative of inflammatory changes, acute or chronic, from sheep and goat respectively (Tables-I & II). It is clearly indicated under methodology that only such nodes having marked naked eye abnormality were subjected to study. Results of isolation, therefore, indicate (Table - VII) isolates from grossly visible lesions and not from less or least advanced and/or fairly healed lesions.

Before going into the infectious agents one may feel allured to state lymphnode tumours were detected in both sheep and goats under
the study which are, in fact, rarely described in literature. In sheep, lymphoma was detected in 1.05%, and in goat the same was present in 0.20% cases (Table - V). Lymphosarcoma was found in 3.15% and 1.35% of sheep and goat respectively (Table - V). Report of Monlux et al. (1956) indicated 34 carcass condemnation due to leukaemia or lymphoma out of 13,000,000 sheep and lambs slaughtered. Cotchin (1960) and Schalm (1965) had reported lymphomas from goat. Results of the present study is, therefore, indicate not only similar findings but also may suggest inclusion of tumours as one of the causes for gross abnormality in lymphnodes in sheep and goat. This may also be a subject of study by future workers.

A glance on the table IV would reveal total number of isolates from lymphnodes of sheep and goat. It was found that 50% of ovine lymphadenitis cases yielded positive results whereas the figure was 31.08% for caprine species (Table - IV). It is really very difficult to comment on such findings as number of caprine lymphnodes subjected to study were more than that of sheep. Is it that methods for isolation required little bit modification for goats than those were adopted in case of sheep? If the answer is 'yes' than it indicates involvement of some other fastidious organisms in goats than that of sheep. But literature, so far published have never pointed out such possibility. Sheep and goat pathogens have been dealt with together, i.e., as pathogen of sheep is usually a pathogen for goats. Number of recorded reports in various countries depended upon the husbandry practice, whether only sheep were kept or only goats or both together.
Another possibility rather a chance for such lower isolation rate from goats may be the reactivity of the goats towards an invader stronger than sheep. To be clear it may be stated that immunocompetence of goats clear out or destroy pathogens more quickly than sheep making it more difficult to isolate the agents although the inflammation persists.

Whatever the case may be, it is evident from the Table - IV that some well known lymphadenitis causing organisms such as, Corynebacteria, Mycobacteria, Streptococci and Staphylococci were obtained from grossly altered lymphnodes of sheep and goats. Isolation of Escherica coli and Salmonella organisms were restricted almost in mesenteric lymphnodes which indicated their well known enteric seat of predilection (Table - VII).

So far Salmonella are concerned, Sharma & Singh (1963) and Nath et al. (1966) isolated S. aberdeen, S. colombo and S. typhimurium from sheep and goats in India. In the present study S. Worthington and S. typhimurium were obtained from sheep, whereas S. enteritidis, S. orien, S. newport, S. Weltevreden and S. typhimurium from goats (Tables - VI & VII).

Isolation of Salmonella sp. from meat purpose animals obviously signifies its impact on public health aspect.

Mycobacteria infection, Mycobacterium bovis as well as Mycobacterium tuberculosis were detected in both sheep and goats (Table - IV) under the present study. It may not be out of place to mention here that saying goes in our country - "Keep a goat and drive out tuberculosis from your house". The sense in between the lines of such proverb indicate non-susceptibility of goats to tuberculosis. In fact available literature in our country present
those of Iyer (1932), Nanda & Gopal Singh (1943) and Mohan (1950) on tuberculosis of such small ruminants. However, the above mentioned authors have isolated \textit{M. bovis} only. It is Robinson (1955) who recorded susceptibility of sheep and goats to \textit{M. bovis} on experimental infection, while non-susceptibility to \textit{M. tuberculosis} was experienced.

Results of the present study clearly indicated picking up of infection of \textit{M. bovis} and \textit{M. tuberculosis} by sheep and goats under natural condition (Tables - IV & VII).

\textit{Corynebacteria}, particularly, \textit{C. ovis} is a well known lymphadenitis causing organism in sheep and goats (Geiger & Davies, 1955, Miberle & Cohrs, 1966, Jubb & Kennedy, 1970; Smith, Jones & Hunt, 1972). The organism has also been isolated from caprine pneumonia by Ramachandran & Sharma (1969) and Sarkar & Bhattacharyya (1975) in India. However, both, \textit{C. bovis} and \textit{C. pyogenes} have been isolated under the present study (Tables - IV & VII).

Isolation of \textit{Streptococci}, \textit{Staphylococci} and \textit{Escheridia coli} (Tables - IV & VII) from lymphadenitis cases of sheep and goats indicate their possible role in causation of lymphadenitis in those species.