CONTENTS

1. INTRODUCTION
 1.1 Gene expression and regulation in eukaryotes 1
 1.1.1 Transcriptional regulation 2
 1.1.2 DNA binding protein 2
 1.1.3 Protein-protein interaction 4
 1.1.4 Transcriptional activation 4
 1.1.5 Regulation of transcription factors 5
 1.1.6 RNA processing 6
 1.1.7 Translational control 7
 1.2 Regulation by protein kinases 7
 1.2.1 Structure of protein kinases 9
 1.2.2 The protein kinase cascade 11
 1.3 Mating and signal transduction pathway in Yeast 14
 1.3.1 In S. cerevisiae 14
 1.3.2 In Schizosaccharomyces pombe 18
 1.4 Candida albicans as an imperfect yeast 19
 1.4.1 Genetics 19
 1.4.2 Morphogenesis 20
 1.4.3 Pathogenicity 21
 1.4.4 Secretory acid proteinase 22

2. AIM AND SCOPE 22

3. CLONING OF THE ACPR GENE AND ITS ANALYSIS
 3.1 INTRODUCTION 24
 3.2 MATERIALS AND METHODS 25
 3.2.1 Strains used 26
 3.2.2 Media and solutions 26
 3.2.3 Isolation of high molecular DNA from C. albicans SC5314 27
 3.2.4 Agarose gel electrophoresis 29
 3.2.5 Standardisation of Sau3A I partial digest of genomic DNA 29
 3.2.6 Size fractionation of Sau3A I partials by sucrose gradient centrifugation 30
 3.2.7 Ligation and packaging 31
 3.2.8 Titering the genomic library 31
 3.2.9 Plating and estimation of titer 32
 3.2.10 Screening the library 32
 3.2.10.1 Plating the library 32
 3.2.10.2 Preparation of 1.3-kb probe 33
 3.2.10.3 Hybridisation with labelled probe 33
 3.2.10.4 Picking up the positive signals 34
 3.2.11 Preparation of liquid lysate 34
 3.2.12 Isolation of phage DNA 35
 3.2.13 Restriction mapping of lambda clones 36
 3.2.14 Subcloning 36
 3.2.15 Transformation in E. coli 37
 3.2.16 Screening and analysis of recombinants 38
 3.2.17 Small scale plasmid isolation 38
 3.2.18 Medium scale plasmid isolation 39
3.2.19 Generation of unidirectional nested deletions with Exonuclease III
3.2.20 Double stranded DNA sequencing by dideoxy chain termination method
3.2.20.1 Preparation of double stranded DNA template and sequencing reactions
3.2.20.2 Casting sequencing gel
3.2.20.3 Electrophoresis
3.2.20.4 Preparation of sequencing gel for autoradiography
3.2.20.5 Reading the sequence
3.2.20.6 DNA sequence analysis and homology search
3.3 RESULTS AND DISCUSSION
3.3.1 Choice of EMBL3 as a cloning vector
3.3.2 Screening the genomic library
3.3.3 Relatedness of the genomic clones
3.3.4 Subcloning
3.3.5 Generation of unidirectional nested deletions and sequencing
3.3.6 Sequence analysis

4. BACTERIAL EXPRESSION AND FUNCTIONAL ANALYSIS OF ACPR
4.1 INTRODUCTION
4.2 MATERIALS AND METHODS
4.2.1 Strains used
4.2.2 Media and solutions
4.2.3 Polymerase Chain Reaction (PCR)
4.2.4 Cloning of the PCR products in pMAL-c expression vector
4.2.5 Induction of the recombinants for expression of the fusion proteins.
4.2.6 Gel electrophoresis of proteins
4.2.7 Western blotting and immunodetection
4.2.8 Time course of induction of recombinant proteins.
4.2.9 Determining the nature of the recombinant protein
4.2.10 Purification of the fusion protein
4.2.11 Cloning into pET3c expression vector and analysis of the recombinants
4.2.12 Time course of induction of pET3c expressed proteins
4.2.13 Determining the nature of the overexpressed proteins expressed in pET3c.
4.2.14 Peptide mapping
4.2.15 Gel mobility shift assays
4.2.15.1 Preparation of E. coli extracts
4.2.15.2 Transformation of S. cerevisiae
4.2.15.3 Preparation of yeast extracts
4.2.15.4 Preparing the target DNA
4.2.15.5 Protein-DNA binding reactions
4.2.15.6 Resolving the protein-DNA complexes
4.2.15.7 Detection of Protein-DNA complexes by autoradiography
4.3 RESULTS AND DISCUSSION
4.3.1 Bacterial expression of ACPR
4.3.2 Functional domains of ACPR
4.3.2.1 Peptide mapping
4.3.2.2 Gel mobility shift assays
CAN ACPR COMPLEMENT THE MATING DEFECT OF STE12 IN S. cerevisiae

5. INTRODUCTION
5.2 MATERIALS AND METHODS
5.2.1 Strains used
5.2.2 Construction of chimaeric genes
5.2.2.1 Design of primers
5.2.2.2 Recombinant PCR
5.2.2.3 Cloning the recombinant PCR products
5.2.2.4 Confirming the chimaeric constructs by sequencing
5.2.3 Transformation into a ste12 mutant strain
5.2.4 Mating assays
5.2.4.1 Qualitative mating assay
5.2.4.2 Quantitative mating assays
5.2.4.3 FUS1 induction
5.2.4.4 RNA isolation
5.2.4.5 Northern blotting
5.3 RESULTS AND DISCUSSIONS
5.3.1 Construction of STE12-ACPR chimaeric genes
5.3.2 Qualitative and quantitative mating assays
5.3.3 FUS1 induction

6. SUMMARY

7. REFERENCES