List of Tables

4.1 Estimation accuracy of our method, SPM, and LSM 62

5.1 Estimated length of hidden message for a sample highly inaccurate type I image with \(\alpha_{30} = 0.00005, \beta_{30} = 0.0115 \) 76

5.2 Estimated length of hidden message for a sample highly inaccurate type II image with \(\alpha_{30} = 0.0245, \beta_{30} = 0.03 \) 77

5.3 Estimated message length (in percent) for highly probably inaccurate sample cover images (\(\mid C_0 \mid < 05\% \)) 78

5.4 Average estimated message length (in percent) for 100 highly accurate images 79

7.1 Estimated message length results (in percent) for two standard images before proposed transformation 95

7.2 Estimated message length (in percent) for two standard images after proposed transformation 96

7.3 Estimated message length (in percent) for hundred images before and after proposed transformation 97

8.1 Estimated message length results (in percent) before and after applying proposed preprocessing algorithm 104
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Variation in relative number of regular and singular groups under masks M and $-M$ with embedding</td>
<td>34</td>
</tr>
<tr>
<td>3.2</td>
<td>Sample image which gives accurate results on steganalysis using RS method</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimated and Actual percentage of flipped pixels by RS method for the image in figure 3.2</td>
<td>37</td>
</tr>
<tr>
<td>3.4</td>
<td>Sample image which gives highly inaccurate results on steganalysis using RS method</td>
<td>39</td>
</tr>
<tr>
<td>3.5</td>
<td>Error in length estimation by RS method for the image in Fig. 3.4</td>
<td>39</td>
</tr>
<tr>
<td>3.6</td>
<td>Transitions due to LSB replacement in each C_m, $1 \leq m \leq 2^{b-1} - 1$</td>
<td>42</td>
</tr>
<tr>
<td>3.7</td>
<td>Transitions due to LSB replacement in C_0</td>
<td>42</td>
</tr>
<tr>
<td>3.8</td>
<td>A sample image which gives highly inaccurate results on steganalysis using Sample Pair Method</td>
<td>47</td>
</tr>
<tr>
<td>3.9</td>
<td>A sample image which gives inaccurate results on steganalysis using Least Square Method</td>
<td>50</td>
</tr>
<tr>
<td>3.10</td>
<td>Error distribution of RS method on 1000 cover images</td>
<td>51</td>
</tr>
<tr>
<td>3.11</td>
<td>Error distribution of Sample Pair Method on 1000 cover images</td>
<td>52</td>
</tr>
<tr>
<td>3.12</td>
<td>Error distribution of LSM on 1000 cover images</td>
<td>52</td>
</tr>
<tr>
<td>4.1</td>
<td>Transitions due to embedding on adjacent pixel pairs of an image: Arrow labels indicate probability of transitions</td>
<td>56</td>
</tr>
<tr>
<td>4.2</td>
<td>Typical variation in cardinalities of blocks of C_ms with embedding</td>
<td>57</td>
</tr>
<tr>
<td>4.3</td>
<td>Typical variation in $</td>
<td>C_m</td>
</tr>
<tr>
<td>4.4</td>
<td>Estimation error against different values of λ</td>
<td>61</td>
</tr>
</tbody>
</table>
5.1 Transitions considered in RSM

5.2 Change in cardinalities of sub multi sets of C_m due to embedding when their cardinalities are almost equal

5.3 Average estimation error (in percent) for sample cover images with $\alpha_{30} \leq 0.02$ and $\beta_{30} \leq 0.03$

5.4 Average estimation error (in percent) by RSM for sample cover images with $|C_0| < 20$

5.5 Average estimation error (in percent) by SPM for sample cover images with $|C_0| < 20$

5.6 Average estimation error (in percent) by LSM for sample cover images with $|C_0| < 20$

6.1 C_i as a fraction of total no of pixels

6.2 Parity difference as a fraction of C_i

6.3 Mean error of estimated length for the sample pair method and improved one

6.4 Standard deviation of error in length estimation using sample pair method and improved one

6.5 Mean error of estimated length for the Least Square Method and improved one when C_0 between 20% and 30%

6.6 Mean error of estimated length for the Least Square Method and improved one when C_0 between 30% and 40%

6.7 Mean error of estimated length for the Least Square Method and improved one when C_0 between 40% and 50%

6.8 Mean error of estimated length for the Least Square Method and improved one when $C_0 > 50$

7.1 Absolute average error shown by 100 test images

8.1 Inverse transitions considered in each C_m, $1 \leq m \leq 2^{b-1} - 1$

8.2 Inverse transitions in C_0

8.3 Change in cardinalities of sub multi sets of C_m due to LSB replacement and Inverse embedding
Notations and Abbreviations

b Number of bits to represent a sample value

C_m sub multi set of P that consists of sample pairs drawn from cover signal and whose values differ by m in the first (b-1) bits (i.e., by right shifting one bit and then measuring the difference of m)

D_n sub multi set of P that consists of sample pairs drawn from cover signal and whose values differ by n

D'_n sub multi set of P that consists of sample pairs drawn from stego signal and whose values differ by n

k 5 for LSM, 30 for SPM and 127 for RSM

P Multi set of sample pairs (u, v) drawn from digital image

p Estimated length as percentage of number of pixels in the image

LSB Least Significant Bit

LSBM LSB matching

LSBMR LSB matching Revisited

LSBR LSB replacement

LSM Least Square method

RSM Regular Singular Method

SPM Sample Pair Method
X_n sub multi set of P that consists of sample pairs drawn from cover signal and whose values differ by n and in which even value is larger

X'_n sub multi set of P that consists of sample pairs drawn from stego signal and whose values differ by n and in which even value is larger

Y_n sub multi set of P that consists of sample pairs drawn from cover signal and whose values differ by n and in which odd value is larger

Y'_n sub multi set of P that consists of sample pairs drawn from stego signal and whose values differ by n and in which odd value is larger