Chapter 1. Protein Nanoparticle Interaction in a Nutshell 1-25

1.1. Introduction 1
1.1.1. Nano Definition 1-2
1.1.2. Nanomaterials 2
1.1.2.1. One Dimensional Nanomaterial 2
1.1.2.2. Two Dimensional Nanomaterial 2
1.1.3. Properties of Nanomaterial’s 3
1.1.4. Characterization of Nano Object 3
1.1.4.1. Transmission Electron Microscope (TEM) 3-4
1.1.4.2. Scanning Electron Microscope (SEM) 4-5
1.1.4.3. Atomic Force Microscopy (AFM) 5
1.1.4.4. Fourier Transform Infrared Spectroscopy (FTIR) 6
1.1.4.5. X-Ray Diffraction (XRD) 6-7
1.2. Nanotechnology 8-9
1.3. Mechanisms of Protein Adsorption 9-10
1.4. Factors that Influenced Protein Nanoparticle Interaction 10
1.4.1. Effect of NP Size 10-11
1.4.2. Effect of NP Shape 11
1.4.3. Effect of NP Crystallinity 12
1.4.4. Effect of Surface Defects 12
1.5. Effects of NP Surface Properties 12
1.5.1. Effect of Charge 12-13
1.5.2. Effects of Smoothness/Roughness 13
1.5.3. Effects of Hydrophobicity/Hydrophilicity 13
1.5.4. Effect of Functional Groups and Targeting Moieties 13-14
1.6. Structure of ZnO Nanoparticle 14-16
1.7. Technique to Identify Protein Nanoparticle Interaction 16
1.7.1. Spectroscopy Methods 16
1.7.1.1. UV/Vis 16-17
1.7.1.2. Fluorescence 17
1.7.1.3. Circular Dichroism 17-18
1.7.1.4. Isothermal Titration Calorimetry (ITC) 18
1.7.1.5. Electrophoresis 18-19
1.7.1.6. One-Dimensional Gel Electrophoresis 19
1.8. Outcome of Protein–NP Interactions 19-20
1.9. Future Prospective 20
1.10. References 21-25

Chapter 2. The Effect of ZnO Binding on the Structure, Function and Activity of Three Model Proteins 26-69

2.1. Introduction 26-29
2.2. Motivation of this work 27-29
2.3. Materials and Methods 29-35
2.3.1. Material 29
2.3.2. Nanoparticle Preparation 29
2.3.3. Sample Preparation 29
2.3.4. Circular Dichroism Spectropolarimetry 29-30
2.3.5. FT-IR (Fourier Transformed Infrared) Spectroscopy 30
2.3.6. Fluorescence Spectroscopy 30-32
2.3.7. Isothermal Calorimetry 32
2.3.8. Glutaraldehyde Cross-Linking 32-33
2.3.9. Lytic Activity of Lysozyme 33
2.3.10. Esterase Activity 33
2.3.11. Determination of binding stoichiometry between lysozyme and ZnO NP by UV spectroscopy 33
2.3.12. Structural analysis 34
2.3.13. Visible Absorption Spectroscopy 34-35
2.3.14. Protease digestion 35
2.4. Results 35-48
2.4.1. Properties of ZnO NPs. 35
2.4.2. Secondary Structure of protein in the Presence of NPs 35-38
2.4.3. Unfolding of Lysozyme in the presence of Urea and GdnHCl 38-39
2.4.4. ANS Binding Studies 40
2.4.5. Quenching of Trp Fluorescence by ZnO NP 40-42
2.4.6. Time resolved fluorescence decay 42-43
2.4.7. Thermodynamic Data on Protein-NP Interaction 43-45
2.4.8. Glutaraldehyde Cross-Linking 45-46
2.4.9. Protein Activity 46-47
2.4.10. α-Lactabumin aggregation 47
2.4.11. Proteolytic digestion of α-lactalbumin in presence of ZnO 48
2.5. Discussion 48-55
2.5.1. Putative binding site of ZnO on different protein 49-53
2.5.2. Binding Thermodynamics of ZnO with different proteins 53
2.5.3. Effect of ZnO NP on the Structure Function and Activity of protein 53-55
2.6. Conclusion 55-56
2.7. References 57-63
2.8. Appendix 64-69

Chapter 3. Bactericidal Effect of Polyethyleneimine Capped ZnO Nanoparticle on Multiple Antibiotic Resistant Bacteria bearing Genes of High Pathogenicity Island 70-102

3.1. Mechanism of Action of Antibiotics 70-71
3.2. Antibiotics Resistance 71-72
3.3 Antibiotic Resistance to Nanoparticle 72-73
3.4. The Antimicrobial Mechanism of Action of Zinc oxide 73
3.5. Safety Issue 73-74
3.6. Surface Functionlization and its effect on Antimicrobial Potential 74-75
3.7. Motivation of Present Work 75
3.8. Materials and Methods 75-82
3.8.1. Synthesis of ZnO Quantum Dots (QDs) 75
3.8.2. Polyethyleneimine (PEI) Capping 76
3.8.3. Characterization of NP by Electron Microscopy 76
3.8.4. FTIR Spectroscopy 76
3.8.5. Atomic Force Microscopy 76
3.8.6. Isolation of Multiple Antibiotic Resistant Bacteria 76
3.8.6.1. Sampling 76-77
3.8.6.2. Isolation of Multiple-Antibiotic Resistant Bacteria 77
3.8.6.3. Antibiotic Susceptibility Test 77
3.8.6.4. Selection of MAR Isolates Bearing Genes of High Pathogenicity Island (HPI) 77-78
3.8.7. Characterization of the Test Strains 78
3.8.7.1. Biochemical Characterization 78
3.8.8. Characterization of Virulence Properties 78
3.8.8.1. Blood Hemolysis and Serum Resistance Assay 78
3.8.9. Agglutination Assay 78
3.8.9.1. Presumptive Agglutination Assay 78
3.8.10. Confirmatory Agglutination Assay 78
3.8.11. Swim Motility 78
3.8.12. Multiplex PCR Assay for Determining the Virulence Factors 79
3.8.13. Preparation of Nanoparticle Dispersion 79
3.8.15. Live/Dead Viability Assay 80
3.8.16. Scanning Electron Microscopic (SEM) Studies 80
3.8.17. Bacteriolytic Effect of ZnO-PEI Nanoparticle 80
3.8.18. Determination of Extracellular ROS by XTT 80-81
3.8.19. Determination of Intracellular ROS in Bacterial cells 81
3.8.20. Effect of Histidine on Antibacterial Effect of ZnO-PEI Nanoparticle 81
3.8.21. DNA Fragmentation Analysis 81
3.8.22. Synergistic or Additive Effect of ZnO-PEI Nanoparticle 81-82
3.8.23. Interaction of ZnO-PEI Nanoparticle with BSA 82
3.9. Results 82-94
3.9.1. Toxicity of Nanoparticle 82-83
3.9.2. Synthesis and Characterization of ZnO-PEI 83-84
3.9.3. Characterization of the Antibiotic Resistance of the Test Strains 84-85
3.9.3.1. PCR Screening of MAR Strains to Locate HPI Specific Genes, irp2 and fyuA 85
3.9.4. Characterization of the Test Strains 85-88
3.9.5. Growth Kinetic Studies of the Test Strains in Presence of Nanoparticles 88-89
3.9.6. Live/Dead Viability Assay 89-90
3.9.7. Towards an Understanding the Mode of Action of ZnO Nanoparticles 90
3.9.7.1. Morphological Transition and Cellular Damage 90
Chapter 4. Antibacterial Activity and Mechanism of Action of Polyethyleneimine Functionalized Zinc Oxide Nanoparticles against Metronidazole-resistant Helicobacter pylori

4.1. Introduction 103-107
4.2. H. pylori-Associated Pathogenesis 105
4.3. The Present Available Therapy Against Helicobacter Pylori 105-106
4.4. Helicobacter and Nanoparticle 106
4.5. Motivation of This Work 106-107
4.6. Materials and Methods 107-109
4.6.1. Dissolution Measurements 107
4.6.2. Scanning Electron Microscopic Studies 107
4.6.3. TEM of Bacterial-Nanoparticle Interactions 107-108
4.6.4. Bacterial Strains and Culture Conditions 108
4.6.5. Bacterial Live-Dead Discrimination and ATP Assay 108
4.6.6. Determination of Intracellular ROS in Bacteria 108-109
4.6.7. RNA Isolation and RNA Degradation Analysis by qRT-PCR and Gel Electrophoresis 109
4.7. Results 109-115
4.7.1. Synthesis and Characterization of ZnO-PEI 109
4.7.2. Internalization of ZnO-PEI Inside the Bacterial Cell 109-110
4.7.3. Growth Curve 110-111
4.7.4. Membrane Damage and Generation of ROS 111-112
4.7.5. Oxidative Stress 112-113
4.7.6. Morphological Transition and RNA Degradation 113-114
4.7.7. Combinatorial Therapy 114-115
4.8. Discussion 115-117
4.8.1. Mechanism of Antibacterial Action 116-117
4.8.2. Morphological Transition 117
4.9. Conclusion 117-118
4.10. References 119-122
4.11. Appendix 123
Chapter 5. The Mechanism of Action of PEG Functionalized Zinc Oxide against Different Breast Cancer Cell Line

5.1. Introduction 124-130
5.2. Nanoparticles and Cancer Treatment 125-127
5.3. Apoptosis and Cancer 127-128
5.4. Zinc oxide, Apoptosis and Prevention of Cancer 128-129
5.5. Motivation of the Work 129-130
5.6. Materials and Method 130-134
5.6.1. Materials 130
5.6.2. Synthesis of ZnO Quantum Dots (QDs) 130
5.6.3. Polyethylene Glycol (PEG) Capping 130-131
5.6.4. Dye-Fluorescein Isothiocyanate (FITC) Capping 131
5.6.5. Nanoparticle Characterization 131
5.6.5.1. Electron Microscopy 131
5.6.5.2. Atomic Force Microscopy 131
5.6.5.3. FTIR Spectroscopy 131-132
5.6.6. Cell Culture 132
5.6.7. Treatment of Cell 132
5.6.8. Flow Cytometry 132-133
5.6.9. Fluorescence Imaging 133
5.6.10. RT-PCR and Western Blotting 133-134
5.6.11. Toxicity Screening 134
5.7. Result 134-145
5.7.1. Characterization of Nanoparticle 134-135
5.7.2. Toxicity of Nanoparticle 135-136
5.7.3. Cytotoxicity of PEG-modified ZnO in Different Cancer Cell Lines 136-138
5.7.4. Internalization of Nanoparticle 138-140
5.7.5. Towards an Understanding the Mode of ZnO-PEG Action 140
5.7.5.1. Up Regulation of Fas at the Cell Surface of Cancer Cell 140-141
5.7.5.2. Role of Caspases in ZnO-PEG Mediated Apoptosis 141-144
5.7.6. Nanoparticle-Induced Lipid Peroxidation and Change in Membrane Potential (Δψm) of the Mitochondria 144-145
5.8. Discussion 145-147
5.9. Conclusion 147-148
5.10. References 149-152

Chapter 6. Curcumin Recognizes a Unique Binding Site in Tubulin

6.1. Introduction 153-157
6.2. Materials and Methods 157-166
6.2.1. Chemistry and Synthesis of Compound 157-158
6.2.2. Synthesis of curcumin analogs (1-8) 158
6.2.2.1. Synthesis of 3-phenylprop-2-enoic acid (9) 158
6.2.2.2. Synthesis of 3-(3, 4-dimethoxyphenyl)prop-2-enoic acid (10) 158-159
6.2.2.3. Synthesis of 3-(3, 4-dihydroxyphenyl)prop-2-enoic acid (11) 159
6.2.2.4. Synthesis of 3-(2-hydroxyphenyl)prop-2-enoic acid (12) 159
6.2.2.5. Synthesis of 3-(2, 4-dihydroxy phenyl)prop-2-enoic acid (13) 159-160
6.2.2.6. 3-phenylprop-2-enoic acid [9] 161
6.2.2.7. 3-(3, 4-dimethoxy phenyl)prop-2-enoic acid) [10] 161
6.2.2.8. 3-(3, 4-dihydroxy phenyl) prop-2-enoic acid) [11] 161
6.2.2.9. 3-(2-hydroxyphenyl) prop-2-enoic acid [12] 161-162
6.2.2.10. 3-(2, 4-dihydroxy phenyl) prop-2-enoic acid) [13] 162
6.2.3. Tubulin Isolation and Estimation 162
6.2.4. Tubulin Polymerization Assay 162-163
6.2.5. Fluorescence Measurement 163
6.2.6. Calorimetry 163-164
6.2.7. Cell culture and Maintenance 164
6.2.8. Cell Proliferation Inhibition Assay (MTT assay) 164
6.2.9. Cell Cycle Analysis by Flow Cytometry 164
6.2.10. Analysis for Apoptosis by Flow Cytometry 164-165
6.2.11. Sample Preparation for Confocal Microscopy 165
6.2.12. FRET 165
6.2.13. Molecular Modeling Study 166
6.3. Results 166-176
6.3.1. Binding of Curcumin Analogs to Tubulin Promote Drug Fluorescence 166-167
6.3.2. Determination of Binding Constant and Thermodynamics 167-170
6.3.3. Inhibition of Tubulin Polymerization by Curcumin Analogs 171
6.3.4. Cell Based Study to Compare Potency of Curcumin and Compound 7 171
6.3.4.1. Inhibition of cell proliferation and delay release of cells from mitotic block 171-172
6.3.4.2. Induction of Apoptosis 172-173
6.3.4.3. Disruption of Interphase Microtubule and Morphological Aberrations 173-175
6.3.4.4. Perturbation of Spindle Microtubule and Chromosomal Organization 175-176
6.4. Discussion 176-182
6.4.1. Localization of the Curcumin-Binding Site on Tubulin Using FRET Experiments 177-179
6.4.2. Molecular Modeling of Compound (7) Binding Site on Tubulin 179-180
6.5. References 183-187
6.6. Appendix 188-212