4. SUMMARY AND CONCLUSION

Hepatocellular carcinoma (HCC) is one of the most fatal cancers having universal prevalence. Most of the cases have been reported in the developing countries of Asia and Africa, but there is an alarming increase in the HCC cases in Western Europe as well as the USA. The major risk factors involved in the development of HCC include chronic liver diseases, viral infections, and dietary carcinogens such as aflatoxins and nitrosamines. The surgical resection and liver transplantation offered limited treatment options. Accordingly, there exists a critical need to investigate and evaluate possible alternative chemopreventive and therapeutic strategies that may be effective in the control of liver cancer. Flavonoids are endowed with potent antioxidant as well as anti-inflammatory, antitumor, antiviral properties, offered an appropriate choice for alleviation of HCC.

Umbelliferone (UMB), a derivative of coumarin, is a benzopyrone and most extensively present in golden apple (Aegle marmelos Correa) and bitter orange (Citrus aurantium). Several studies have shown that UMB exerts potent antioxidant, antidiabetic, and antitumor effects against lung cancer cell line. A study revealed that UMB also exerts a protective effect against oxidative stress in the heart and brain. It is also used in sunscreen lotion as an antioxidant and has minimal toxicity. Several studies reported that UMB has antihyperglycemic, antihyperlipidemic, anticoagulant, anti-inflammatory, and analgesic properties.

Vitamin C is widely distributed in plants, such as citrus fruits, tomatoes, green peppers, red peppers, strawberries, broccoli, turnip, and other leafy vegetables. There are substantial epidemiological data pointing to the benefits of Vitamin C in the prevention of a numerous cancer types. A number of studies show an inverse
Individual and synergetic effects of Umbelliferone with Vitamin C ...an in vivo and in vitro study

relationship between Vitamin C status in the treatment of cancers, including breast cancer, cervical cancer, esophageal cancer, bladder cancer, colorectal cancer, pancreatic cancer, reticulum cell sarcoma, salivary cancer, and stomach and gastrointestinal cancer.

Therefore, this study was designed to elucidate the effects of UMB alone and along with Vitamin C in preclinical in vitro and in vivo models of HCC with particular emphasis to its antioxidant, anti-inflammatory, antilipid peroxidative, antilipdemic effects as well as involvement in various molecular signaling mechanisms. The results of the in vitro and in vivo studies are summarized as follows:

In vitro study
1. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay was performed in HepG2 cells to determine the IC$_{50}$ concentrations for UMB, Vitamin C, and UMB+Vitamin C. UMB, Vitamin C, and combined effect of UMB+Vitamin C treated with HepG2 cells resulted in concentration-dependent cytotoxicities, especially at 25.47, 10.95, and 7.55mM for 24 hours. UMB and the synergistic effect of both exhibited significant attenuation of cell proliferation.
2. UMB, Vitamin C, and UMB+Vitamin C treatment at 25.47, 10.95, and 7.55mM for 24 hours resulted in significant morphological changes, nuclear cleavage, and apoptosis, as revealed by dual staining with ethidium bromide/Acridine Orange staining on HepG2 cells.
3. UMB, Vitamin C, and UMB+Vitamin C treatment at 25.47, 10.95, and 7.55mM for 24 hours resulted in significant morphological changes, nuclear cleavage, and apoptosis, as revealed by propidium iodide staining on HepG2cells.
Individual and synergetic effects of Umbelliferone with Vitamin C ...an in vivo and in vitro study

4. UMB, Vitamin C, and UMB+Vitamin C treatment at 25.47, 10.95, and 7.55mM for 24 hours resulted in DNA fragmentation in HepG2 cells, as evident from DNA ladder-like pattern determined by agarose gel electrophoresis.

4. Cell cycle analysis was determined by administering UMB, Vitamin C, and UMB+Vitamin C on HepG2 cells. This treatment could arrest the HepG2 cells at G₀/G₁ phase more effectively than the S and G₂/M phase.

5. Immunoblot analysis of apoptotic proteins of HepG2 cells treated with UMB, Vitamin C, and UMB+Vitamin C confirmed the apoptosis by upregulation of proapoptotic proteins such as Bax and caspase-3 and downregulation of antiapoptotic protein Bcl-2.

In vivo study

Experiment I

1. N-Nitrosodiethylamine (DEN)-induced rats showed significant increase in body weight for the first 8 weeks, later it was observed that the body weight was declined sequentially and there was a sharp loss in body weight. On UMB treatment, the body weight was significantly increased when compared to DEN-induced rats.

2. Morphological studies of DEN-induced rats showed enlarged liver, and the nodule incidence of DEN group was 100%. The maximum diameter of nodules was about 10 mm and clear necrosis regions were observed in DEN induced rats. Interestingly, a significant reduction in liver enlargement, nodule incidence, and the nodule numbers was observed in DEN with UMB-treated rats than in DEN group.

3. Histopathological studies of DEN-induced rat liver showed loss of normal liver hepatocyte architecture due to HCC, and examination of UMB-treated rat liver revealed near-normal architecture of the liver hepatocytes.
Individual and synergetic effects of Umbelliferone with Vitamin C ……………………
…………………………………………………………………………………………an in vivo and in vitro study

4. A significantly increased activity of serum and tissue lipid peroxidation end
products such as TBARS, MDA, and CD was seen in DEN-induced rats, whereas
treatment with UMB resulted in a marked decrease in the levels of these substances
to near-normal levels, indicating the protective antioxidant effect of UMB.

5. A significantly decreased activity of serum and tissue enzymatic and non-
 enzymatic antioxidants such as SOD, CAT, GR, GST, GPx, and GSH, Vitamin C
and Vitamin E was seen in DEN-induced rats, on treatment with UMB could reverse
the above-said antioxidants to near-normal level, suggesting the anticancer potential
action of UMB.

6. Liver-specific serum markers such as AST, ALT, ALP, and ACP were
significantly increased in DEN-induced rats, whereas near-normal levels were
observed after treatment with UMB.

Experiment II

1. Histopathological studies of DEN-induced rat liver showed loss of normal liver
hepatocytes architecture due to HCC, and examination of UMB and UMB+Vitamin
C-treated rat liver revealed near-normal architecture of the liver hepatocytes.

2. Ultrastructural changes in DEN-induced rat liver showed multiple irregularly
shaped nuclei close to each other with irregular cytoplasm, but treatment with UMB
and UMB+Vitamin C showed liver cells with shrunken nucleus and condensed
chromatin undergoing apoptosis.

3. Lipid profiles such as TC,TG, FFA, PL, total protein and albumin were
significantly increased and bilirubin was decreased in DEN-induced rats, whereas
near-normal levels of these lipid profiles and protein were noted after treatment with
UMB and UMB+Vitamin C.
Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

4. Liver cancer-specific serum markers such as α-fetoprotein (AFP) and
carcinoembryonic antigen were found to be significantly increased in DEN-induced
rats, whereas near-normal levels of these serum markers were observed after
treatment with UMB and UMB+Vitamin C.

5. The expressions of inflammatory markers such as MMP-2 and MMP-9 were
found to be increased in DEN-induced rats, whereas those in UMB+Vitamin C-
treated rats greatly reduced to near-normal level.

6. The expressions of mast cells by using toluidine blue staining were found to be
increased in DEN-induced rats, whereas those in UMB and UMB+Vitamin C treated
rats greatly reduced to near-normal level.

7. Reverse transcriptase-PCR (RT-PCR) was performed for NF-κB65, COX-2 and
TNF-α, and the levels of these mRNA genes were increased in DEN induced rats,
whereas treatment with UMB alone for different regimens and with Vitamin C
significantly suppressed the levels of these genes to near-normal in DEN-induced
experimental rats.

8. The expression of NF-κBp65 and TNF-α in control and experimental groups was
determined by Western blot analysis. Increased expressions of NF-κBp65 and TNF-α
were observed in DEN-induced rats, whereas treatment with UMB alone for different
regimens and with Vitamin C significantly suppressed the levels of these genes to near
normal in DEN induced experimental rats.

9. Increased expression of argyrophili nucleolar organizer regions (AgNORs) and
proliferating cell nuclear antigen (PCNA) (markers for cell proliferation) were noted
in DEN-induced liver cancer-bearing rats whereas those in UMB and UMB+Vitamin
Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

Created rats were observed to be near normal in DEN-induced rats, proving the individual and synergistic anticancer effects UMB and Vitamin C have.

10. The expression levels of apoptotic proteins such as Bax, caspase-9, and caspase-3 were found to be decreased and antiapoptotic protein Bcl-2 was significantly increased in DEN-induced rats whereas treatment with UMB, UMB+Vitamin C found to reverse the apoptotic and antiapoptotic proteins to near-normal levels in DEN-induced experimental groups.

11. DNA fragmentation pattern induced by UMB and Vitamin C treatment in experimental groups was determined by agarose gel electrophoresis and in situ TdT-mediated dUTP nick end labeling (TUNEL) staining. DEN-induced rats showed no DNA fragmentation whereas treatment with UMB+Vitamin C in DEN-induced rats (groups 4, 5, and 6) showed a DNA fragmentation and induction of cell death in the form of apoptosis.

CONCLUSION

Our study clearly demonstrated that, the combined treatment of UMB+Vitamin C combination appreciably attenuates the reversible alterations in the DEN induced hepatocellular carcinoma with no harmful adverse effects. This provides an experimental proof on the therapeutic impact of UMB+Vitamin C against hepatocellular carcinoma. This will be provided the awareness about natural dietary compounds and their combination has significant impact in treating cancer to avoid toxicity and further studies needed to prove the molecular mechanisms implicated in the efficacy of UMB+Vitamin C as anticancer agents.
REFERENCES

Individual and synergetic effects of Umbelliferone with Vitamin C ………………
………………………………………………………………………………………….an in vivo and in vitro study

A Ak P and Levine AJ. p53 and NF-kappa B: different strategies for responding
to stress lead to a functional antagonism. FASEB J, 2010;24:3643-3652.

A Almino Cardoso Ramos, Marina Rachel Araujo, Luiz Roberto Lopes, et al.,
Role of the Vitamin C in diethylnitrosamine-induced esophageal cancer in

A American Cancer Society: Cancer Facts and Figures 2014. Atlanta, Ga:
American Cancer Society, 2014.

A Ames BN, Shigenaga MK and Hagen TM. Oxidants, antioxidants, and the
degenerative diseases of aging. Proceedings of the National Academy of
Sciences, United States of America, 1993;90(17):7915-7922

A Ames BN. Endogenous oxidative DNA damage, aging, and cancer. Free
Radical Research, 1989;7(3):121-128.

A Ana Catarina Mamede, Sonia Dorilde Tavares , Ana Margarida Abrantes, et
al., The Role of Vitamins in Cancer: A Review, Nutrition and Cancer,
2011;63:(4)479-494.

A Andreeff M, Goodrich DW and Pardee AB. Cell Proliferation,
Differentiation, and Apoptosis. In: Bast RC Jr, Kufe DW, Pollock RE, et al.,
Decker; Chapter 2. 2000.

A Andrikoula M, Tsatsoulis A. The role of Fas-mediated apoptosis in thyroid

A Anne S. Tsao MD, Edward S, et al., Chemoprevention of Cancer. CA Cancer
Journal for Clinicians, 2004;54:150-180

168
Individual and synergetic effects of Umbelliferone with Vitamin C ………………
……………………………………………………………………………………………an in vivo and in vitro study

A Atsushi Kato, Anju Peters, Lydia Suh, et al., Evidence of a Role for B cell-activating factor of the TNF family in the pathogenesis of chronic rhinosinusitis with nasal polyps Journal of Allergy and Clinical Immunology, 2008;121(6):1385-1392.

Individual and synergetic effects of Umbelliferone with Vitamin C ..an in vivo and in vitro study

A Becker FF and Sell S. Differences in serum α-fetoprotein concentrations during the carcinogenic sequences resulting from exposure to diethylnitrosamine or acetaminofluorene. Cancer Research, 1979;39:1437-1442.

Individual and synergetic effects of Umbelliferone with Vitamin C …………………
……………………………………………………………………………………………an in vivo and in vitro study

American Journal of Physiology - Heart and Circulatory Physiology, 2002;283:518-525

172
Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C …………………
……………………………………………………………………………………an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C ……………………. an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

A Derenzini M, Pession A and Trere D. The quantity of nucleolar silver-stained proteins is related to proliferating activity in cancer cells. Lab Investigation, 1990;63:137-140

A Derenzini, M. The AgNORs. Micron, 2000;31:117-120.

Individual and synergetic effects of Umbelliferone with Vitamin C an in vivo and in vitro study

A Douglas RM, Hemila H, Chalker E, et al., "Vitamin C for preventing and treating the common cold". In Hemilä, Harri. Cochrane Database Systematic Reviews, 2007;3:

A Dröge W. Oxidative stress and aging. Advances in Experimental Medicine and Biology, 2003;543:191-200

Individual and synergetic effects of Umbelliferone with Vitamin C ………………….. an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C ……………………
……………………………………………………………………………………………………an in vivo and in vitro study

A Gavriel Y, Sherman Y, and Ben-Sasson SA. Identification of programmed
cell death in situ via specific labeling of nuclear DNA fragmentation. Journal

chemopreventive formulation against diethylnitrosamine induced
hepatocellular carcinoma in rat. Chemical Biological Interaction,

A Gomaa AI, Khan SA, Toledano MB, et al., Hepatocellular carcinoma:
Epidemiology, risk factors and pathogenesis. World Journal of
Gastroenterology, 2008;14:4300-4308.

A Gomathi D, Kalaiselvi M, Ravikumar G, et al., Evaluation of enzymatic and
non-enzymatic antioxidant potential of Evolvulus alsinoides (L.)L. Asian

A Goodsell DS. "Catalase". Molecule of the Month. RCSB Protein Data Bank.

A Gopalkrishnan Ramakrishnan, Carmen Martha Elinos-Ba’ez, Sundaram
Jagan, Titto Alby Augustine, Sattu Kamaraj, Pandi Anandakumar, et al.,
Silymarin downregulates COX-2 expression and attenuates hyperlipidemia
during NDEA-induced rat hepatocellular carcinoma. Mol Cell Biochem.

eliminates preneoplastic cells through apoptosis and antagonizes
carcinogenesis in rat liver. Proceedings of the National Academy of
Sciences, 1994;90: 9995-9999.
Individual and synergetic effects of Umbelliferone with Vitamin C ………………
……………………………………………………………………………………………………an in vivo and in vitro study

A Guedes PG, Lage CLS, et al., Tumor malignancy is engaged to prokaryotic homolog toolbox. Medical Hypotheses, 2012;78:435-441

A Gutiérrez JB and Salsamendi AL. Fundament osdeciência toxicolórica. Diaz de santos Madrid, 2001;155-177

Individually and synergetic effects of Umbelliferone with Vitamin C

Individual and synergetic effects of Umbelliferone with Vitamin C

A Higuchi Y and Linn S. Purification of all forms of HeLa cell mitochondrial DNA and assessment of damage to it caused by hydrogen peroxide treatment of mitochondria or cells. Journal of Biological Chemistry, 1995;270:7950-7956.

A Hirose M, Imaida K, Tamano S. Cancer chemoprevention by antioxidants, in: CT. Ho, T. Osawa MT. Huang RT. Resen (Eds.), Food Phytochemicals. II.
Individual and synergetic effects of Umbelliferone with Vitamin C …………………
…………………………………………………………………………………………………..an in vivo and in vitro study

Teas, Spices and Herbs, American Chemical Society, Washington, DC, 1994;122-132.

Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

A Iqbal J, Minhajuddin M and Beg ZH. Suppression of diethylnitrosamine and
2-acetylaminoflurene induced hepatocarcinogenesis in rats by tocotrienol rich
fraction isolated from rice bran oil. European Journal of Cancer Prevention,

A Islam, Ran Joo Choi, Seong Eun Jin, et al., Mechanism of anti-inflammatory
activity of umbelliferone 6-carboxylic acid isolated from Angelica decursiva.

A Isozaki, Kunio Okajima, Tadashi Ichinona, et al., The significance of
Proliferating Cell Nuclear Antigen (PCNA) expression in cancer of the

A IUPAC-IUB Commission on Biochemical Nomenclature (CBN), 2007

A Jemal D, Freddie Bray VM, Melissa M, et al., Global cancer statistics. CA: A

A Jeong WS and Lachance PA. Phytosterols and fatty acids in fig (Ficus carica,
var.Mission) fruit and tree components. Journal of Food Science,

A Ji BC, Hsu WH, Yang JS, et al., Gallic acid induces apoptosis via caspase-3
and mitochondrion-dependent pathways in vitro and suppresses lung
xenograft tumor growth in vivo. Journal of Agriculture and Food Chemistry,
2009;57:7596-7604.

A Jialal and Singh: Is Vitamin C an antiinflammatory agent? American Journal

A Jie Sun, Ju Xiong, Yan Zhen, et al., P53 and PCNA is Positively Correlated
with HPV Infection in Laryngeal Epitheliopapillomatous Lesions in Patients
Individual and synergetic effects of Umbelliferone with Vitamin C
.................................an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C
...an in vivo and in vitro study

A Kanazawa K, Uehara M, Yanagitani H, et al., Bioavailable flavonoids to
suppress the formation of 8-OHdG in HepG2 cells. Archives of Biochemistry
and Biophysics, 2006;455:197-120.

A Kanimozhi G, Rajendra Prasad N, Ramachandran S, et al., Umbelliferone
protects whole-body irradiated Swiss albino mice: Study on animal survival,
tissue antioxidant status and DNA damage. Biomedicine & Preventive

A Kanoh M, Takemura G, Misao J, et al., Significance of myocytes with
positive DNA in situ nick end-labeling (TUNEL) in hearts with dilated
cardiomyopathy. Not apoptosis but DNA repair. Circulation, 1999; 99:2757-
2764.

A Kanzler S and Galle PR: Apoptosis and the liver. Seminar in Cancer Biology,

A Karin M and Ben-Neriah Y. "Phosphorylation meets ubiquitination: the
control of NF-κB activity". Annual Review of Immunology, 2000;18:621-
663.

A Karin M. NF-kappa B as a critical link between inflammation and cancer.

A Karoui H, Hogg N, Frejville C, et al., Characterization of sulfur-centered
radical intermediates formed during the oxidation of thiols and sulfite by
peroxynitrite-ESR-SPIN trapping and oxygen uptake studies. Journal of
Biological Chemistry, 1996;271:6000-6009.
Individual and synergetic effects of Umbelliferone with Vitamin C ………………..
………………………………………………………………………………………an in vivo and in vitro study

A Kasibhatla S, Amarante-Mendes GP, Finucane D, et al., Acridine
Orange/Ethidium Bromide (AO/EB) Staining to Detect Apoptosis. CSH
Protocol, 2006;1:3.

A Kaur, Manish Kumar, Bikram Singh, et al., Amelioration of oxidative stress
induced by oxidative mutagens and COX-2 inhibitory activity of
umbelliferone isolated from Glycyrrhiza glabra L. Asian Pacific Journal of
Tropical Biomedicine, 2012;120-126.

A Keating GM, Santoro AS: a review of its use in advanced hepatocellular

A Kelly Deirdre. Significant cancer mortality in India-the introduction of a
national cancer grid; 2013. Kelly scientific publication

A Kelman Z. PCNA: structure, functions and interactions. Oncogene,
1997;14:629-640.

A Kenya PR. Oral contraceptives use and liver tumors: a review. East African
Medical Journal, 1990;67:146-153

A Kerr JF, Wyllie AH and Currie AR. Apoptosis: a basic biological
phenomenon with wide-ranging implications in tissue kinetics. British Journal

A Kerr JFR, Winterford CM and Harmon BV. Apoptosis –its significance in

A Keshgegian AA, Cnaan A. Proliferation markers in breast carcinoma. Mitotic
figure count, S-phase fraction, proliferating cell nuclear antigen, Ki-67 and
Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

A Ketterer B, Meyer DJ. Glutathione transferases: a possible role in the
detoxification and repair of DNA and lipid hydroperoxides. Mutation

A Kew MC. “Epidemiology of chronic hepatitis B virus infection,
hepatocellular carcinoma, and hepatitis B virus-induced hepatocellular

A Kew MC. Hepatic iron overload and hepatocellular carcinoma. Cancer

A Khan N, Afaq F and Mukhtar H. Apoptosis by dietary factors: the suicide

A Khazaie K, Blatner NR, Khan MW, et al., The significant role of mast cells in

A Kim H, Kim EH, Eom YW, et al., Sulforaphane sensitizes tumor necrosis
factor related apoptosis inducing ligand (TRAIL)-resistant hepatoma cells to
TRAIL induced apoptosis through reactive oxygen species-mediated up-

A Kim SJ, Jung HJ, Hyun DH, et al., Glutathione reductase plays an anti-
apoptotic role against oxidative stress in human hepatoma cells. Biochimie,
2010;92:927-932.

A King J. The dehydrogenases or oxido reductase-lactate dehydrogenase.
1965:83-93.

A King J. The phosphohydrolases-acid and alkaline phosphatase. In: Practical
Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

A King J. The transferase-alanine and aspartate transaminase. In: Practical

A Klaunig JE, Kamendulis LM, The role of oxidative stress in carcinogenesis,

ochratoxin A, ochratoxin B, and citrinin differ in their genotoxic activities and
in their mode of action in human-derived liver (HepG2) cells: implications for

A Knight JA. Diseases related to oxygen-derived free radicals. Annals of
Clinical and Laboratory Science, 1995;25:111-121.

A Kojo S. Vitamin C: basic metabolism and its function as an index of oxidative

A Kolaja KL and Klaunig JE. Vitamin E modulation of hepatic focal lesion

hepatic adenoma: incidental discovery after long-term oral contraceptive use.
Western Journal of Medicine, 1991;155:416-418.

A Kumar R and Hemalatha S. In-vitro antioxidant activity of alcoholic leaf
extract and sub fractions of Alangium lamarckii Thwaites. Journal of

A Kuo M, Savaraj N. Roles of reactive oxygen species in hepatocarcinogenesis
and drug resistance gene expression in liver cancers. Molecular
Carcinogenesis, 2006;45:701-709
Individual and synergetic effects of Umbelliferone with Vitamin C

Individual and synergetic effects of Umbelliferone with Vitamin C
...an in vivo and in vitro study

A Lu H, Ouyang W, Huang C. Inflammation, a key event in cancer development, Molecular Cancer Research, 2006;4:221-233.
Individual and synergetic effects of Umbelliferone with Vitamin C
..........................an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C …………………… an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C .. an in vivo and in vitro study

A McGregor GP, Biesalski HK. "Rationale and impact of Vitamin C in clinical nutrition". Current Opinion in Clinical Nutrition and Metabolic Care, 2006;9(6): 697-703.

Individual and synergetic effects of Umbelliferone with Vitamin C an in vivo and in vitro study

A Miyashita T, Krajewski S, Krajewska M, Wang et al., Tumor suppressor p53 is a regulator of bcl-2 and bax gene expression in vitro and in vivo. Oncogene, 1994;9:1799-1805

A Myint PK, Luben RN, Welch AA, et al., "Plasma Vitamin C concentrations predict risk of incident stroke over 10 y in 20,649 participants of the European
Individual and synergetic effects of Umbelliferone with Vitamin C
..
an in vivo and in vitro study

Prospective Investigation into Cancer Norfolk prospective population study”.

A Nabors LB, Suswam E, Huang Y, et al., Tumor necrosis factor alpha induces
angiogenic factor up-regulation in malignant glioma cells: a role for RNA

A Naser B, Bodinet C, Tegtmeier M, et al., a review of its pharmaceutical,
pharmacological and clinical properties. Evidence-Based Complementary and
Alternative Medicine, 2005;2:69-78.

A National Cancer Institute. Surveillance Research Program, Fast stats:an

A Nicoletti I, Migliorati G, Pagliacci MC, et al., A rapid and simple method for
measuring thymocyte apoptosis by propidium iodide staining and flow

A Nomura DK, Cravatt BF. Lipid Metabolism in Cancer. Biochimica et

A Noriko Noda and Hiro Wakasugi. Cancer and Oxidative Stress. The Journal
of the Japan Medical Association, 2000;124 (11)1571-1574.

A Nzeako UC, Guicciardi ME, Yoon JH, Bronk SF, Gores GJ. COX-2 inhibits
Fas-mediated apoptosis in cholangiocarcinoma cells. Journal of Hepatology,
2002;35:552-559.

A O’kennedy R and Thornes RD. Coumarins-biology, applications and mode of

A Oh KJ, Singh P, Lee K, et al., Conformational changes in BAK, a pore-
forming proapoptotic Bcl-2 family member, upon membrane insertion and
Individual and synergetic effects of Umbelliferone with Vitamin C …………………
……………………………………………………………………………………………...an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C ...
an in vivo and in vitro study

A Park EJ, Lee JH, Yu GY, et al., Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell, 2010;140:197-208

Individual and synergetic effects of Umbelliferone with Vitamin C
..
an in vivo and in vitro study

A Plaa GL, Hewitt WR. Detection and evaluation of chemically induced liver

A Platt BS, Eddy TP and Pellett PL. Food in Hospitals. Anonymous. Nuffield

A Ploton D, Menager M, Jeannesson P, et al., Improvement in the staining and
in the visualization of the argyrophilic proteins of the nucleolar organizer

A Podmore ID, Griffiths HR, Herbert KE, et al., "Vitamin C exhibits pro-

A Poon RT, Ng IO, Lau C, et al., Correlation of serum basic fibroblast growth
factor levels with clinicopathologic features and postoperative recurrence in

A Prabu T, Ragunath M and Manju V. Antioxidant potential of naringin - a
dietary flavonoid in N-Nitrosodiethylamine in induced rat liver carcinogenesis.

A Preedy VR, Watson RR and Sherma Z. Dietary Components and Immune

A Pric A, Lucas PW, Lea DJ. Age dependent damage and glutathione
metabolism in ozone fumigated barley: A leaf section approach. Journal of
Experimental Biology, 1990;41:1309-1317.

A Pryor WA. Vitamin E and heart disease: basic science to clinical intervention
trials. Free Radicals Biology and Medicine, 2000;28:141-64.
Individual and synergetic effects of Umbelliferone with Vitamin C
..
an in vivo and in vitro study

A Qi YT, Chen X, Chan CY, et al., Two-dimensional differential gel
lectrophoresis/analysis of diethylnitrosamine induced rat hepatocellular

A Ragunath M, Prabu T, Nadasabapathy S, et al., Synergistic and individual
effects of umbelliferone with 5-flourouracil on the status of lipid peroxidation
and antioxidant defense against 1, 2-dimethylhydrazine induced rat colon

A Raj HG, Parmar VS, Jain SC. Mechanism of biochemical action of substituted
4-methylbenzopyran-2-ones. Part II: Mechanism-based inhibition of rat liver
microsome-mediated aflatoxin B1-DNA binding by the candidate
antimutagen 7, 8-diacetoxy-4-methylcoumarin. Bioorganic and Medicinal

A Rajbir Singh, Bikram Singh, Sukhpreet Singh et al., Umbelliferone – An
antioxidant isolated from Acacia nilotica (L.) Wild. Ex. Del. Food Chemistry,
2010;120:825-830.

A Rajesh M and Latha M. Preliminary evaluation of the antihepatotoxic effect
of Kamilari, a polyherbal formulation. Journal of Ethnopharmacology,
2004;91:99-104.

A Rajeshkumar NV, Kuttan R. Modulation of carcinogenic response and
antioxidant enzymes of rats administered with 1,2-dimethylhydrazine by

A Ramakrishnan G, Augustine TA, Jagan S, et al., Effect of silymarin on N-
nitrosodiethylamine induced hepatocarcinogenesis in rats. Experimental
Individual and synergetic effects of Umbelliferone with Vitamin C ... an in vivo and in vitro study

A Ramakrishnan G, Raghavendran HR, Vinodhkumar R, et al., Suppression of N-nitrosodiethylamine induced hepatocarcinogenesis by silymarin in rats. Chemical and Biological Interaction, 2006;161:104-114

Individual and synergetic effects of Umbelliferone with Vitamin C ...
..an in vivo and in vitro study

A Roe JM, Kuether CA. Detection of ascorbic acid in whole blood, and urine through 2,4-DNPH derivative of dehydroascorbic acid. Journal of Biological Chemistry, 1943;147:399-307.
Individual and synergetic effects of Umbelliferone with Vitamin C .. an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C …………………
…………………………………………………………………………………………………an in vivo and in vitro study

A Scandalios JG. The antioxidant enzyme genes CAT and SOD of maize: regulation, functional significance and molecular biology. Isozymes Current Top Biological Medical Research, 1987; 14:19-44.

Individual and synergetic effects of Umbelliferone with Vitamin C
..an in vivo and in vitro study

A Sell S, Becker F, Leffert HL, et al., α-Fetoprotein as a marker for early events
and carcinoma development during chemical hepatocarcinogenesis.
Environmental Science Research, 1983;29:271-293.

A Sell S, Becker FF. Alpha-Fetoprotein. Journal of the National Cancer

A Shahrul Hisham Zainal Arifin, Wan Haifa Haryani Wan Omar, Zaidah Zainal
Arifin, et al., Intrinsic anticarcinogenic effects of Piper sarmentosum
ethanolic extract on a human hepatoma cell line. Cancer Cell International,

A Sheng H, Shao J, DuBois RN. K-Ras-mediated increase in cyclooxygenase 2
mRNA stability involves activation of the protein kinase B1. Cancer
Research, 2001;61:2670-2675.

A Shenkin A. "The key role of micronutrients". Clinical Nutrition, 2006;25 (1):
1-13.

A Shieh JM, Chiang TA, Chang WT, et al., Plumbagin inhibits TPA-induced
MMP-2 and u-PA expressions by reducing binding activities of NF-kappa B
and AP-1 via ERK signaling pathway in A549 human lung cancer cells.
Molecular and Cellular Biochemistry, 2010;335(1-2):181-93.

A Singal AK, Anand BS. Mechanisms of synergy between alcohol and hepatitis

A Sinha KA. Colorimetric assay of catalase. Annals Biochemistry, 1972;47:389-
394.
Individual and synergetic effects of Umbelliferone with Vitamin C ……………………
………………an in vivo and in vitro study

A Sirri V, Roussel P, Trere D, et al., Amount variability of total and individual
Ag-NOR proteins in cells stimulated to proliferate. Journal of Histochemistry

A Sivaramakrishnan V and Niranjali Devaraj S. Morin regulates the expression
of NF-kB-p65, COX-2 and matrix metalloproteinases in diethylnitrosamine
induced rat hepatocellular carcinoma. Chemico-Biological Interactions,
2009;180:353-359.

A Sivaramakrishnan V, Shilpa PNM, Kumar VRP, et al., Attenuation of N-
nitrosodiethylamine-induced hepatocellular carcinogenesis by a novel

2000;21(3)525-530.

A Stamp LK, O'Donnell JL, Frampton C, "Clinically insignificant effect of
supplemental Vitamin C on serum urate in patients with gout; a pilot
randomised controlled trial." Arthritis and Rheumatism, 2013;65(6):1636-
1642.

A Stanchev S, Momekov G, Jensen F, et al., Synthesis, computational study and
cytotoxic activity of new 4-hydroxycoumarin derivatives. European Journal

evidence for the 'antioxidant hypothesis'". Public Health and Nutrition,

A Staudt LM. Oncogenic activation of NF-kappaB. Cold Spring Harb Perspect
Biol. Structurally related mycotoxins ochratoxin A, ochratoxin B, and citrinin
Individual and synergetic effects of Umbelliferone with Vitamin C an in vivo and in vitro study

Individual and synergetic effects of Umbelliferone with Vitamin C ... an in vivo and in vitro study

A Toshio Inoue, Osamu Niide, Satoshi Nunomura, et al., FceRI Signaling of Mast Cells Activates Intracellular Production of Hydrogen Peroxide: Role in the Regulation of Calcium Signals. The Journal of Immunology, 2003;171:6119-6127.
Individual and synergetic effects of Umbelliferone with Vitamin C
.. an in vivo and in vitro study

A Toyama Daniela de Oliveira, Marangoni S, Diz-Filho EBS, et al., Effect of umbelliferone (7-hydroxycoumarin, 7-HOC) on the enzymatic, edematogenic and necrotic activities of secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus collilineatus venom. Toxicon, 2009;53:417-426.

A Trosko JE. Commentary: is the concept of “tumor promotion” a useful paradigm? Molecular Carcinogenesis, 2001;30:131-137

Individual and synergetic effects of Umbelliferone with Vitamin C ..an in vivo and in vitro study

A Van Hinsbergh VW, Eaglse MA and Quax PH. Pericellular proteases in angiogenesis and vasculogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006;26 (4): 716-728

Individual and synergetic effects of Umbelliferone with Vitamin C …………………
……………………………………………………………………………………an in vivo and in vitro study

212
Individual and synergetic effects of Umbelliferone with Vitamin C an in vivo and in vitro study

A Young IS and Woodside IS. Antioxidants in health and disease. Journal of Clinical Pathology, 2001; 54:176-86

Individual and synergetic effects of Umbelliferone with Vitamin C ……………
……………………………………………………………………………………………an in vivo and in vitro study

A Zapata JM, Pawlowski K, Haas E, et al., A diverse family of proteins
containing tumor necrosis factor receptor-associated factor domains. Journal
of Biological Chemistry, 2001;276:24242-24252.

A Zhang XL, Shi JQ, Bian XW. Quantitative study on morphologic features and
proliferative activity during DEN induced hepatocarcinogenesis in rats. Disan

A Zhao QT, Yue Z, Cui Q, et al., Potential involvement of the cyclooxygenase-
2 pathway in hepatocellular carcinoma-associated angiogenesis. Life Science,
2007;80(5):484-492.

A Zilversmit DB, Davis AK, 1950. Microdetermination of plasma phospholipids
by trichloroacetic acid precipitation. Journal of Lab Clinical Medical,

A Zimmer R and Thomas P. Mutations in the carcinoembryonic antigen gene in
colorectal cancer patients: implications on liver metastasis. Cancer Research,
2001;61:2822-2826.

determination of serum cholesterol. Journal of Lab Clinical Medicine,
1953;45:486.