Index

Introduction 1

1. Review of literature 2
 1.1 Dengue and its current epidemics 4
 1.2 Dengue diseases syndromes 6
 1.2.1 Dengue fever 6
 1.2.2 Dengue hemorrhagic fever 6
 1.2.3 Dengue shock syndrome 7
 1.3 Dengue viruses 7
 1.3.1 The structure and genome organization 7
 1.3.2 The life cycle 10
 1.3.3 The transmission 11
 1.4 Present status of dengue diagnosis 12
 1.4.1 Virus isolation 13
 1.4.2 Molecular diagnosis 14
 1.4.3 Serological diagnosis 15
 1.4.3.1 Antigen detection 15
 1.4.3.2 Antibody detection 16
 ➢ Hemagglutination inhibition assay 16
 ➢ Plaque reduction neutralization assay 17
 ➢ Fluorescent antibody test 17
 ➢ Complement fixation assay 17
 ➢ ELISA 17
 ➢ Immunoblot assay and immunochromatography tests 18
 1.4.4 Currently available dengue diagnostic kits 18
1.5 Dengue diagnostic epitopes 19

1.5.1 Methods for epitope identification 19
 1.5.1.1 Computer assisted prediction 19
 1.5.1.2 Phage display 20
 1.5.1.3 Peptide scanning 21

1.5.2 Diagnostic epitopes of dengue viral proteins 25
 1.5.2.1 Envelope protein 26
 1.5.2.2 Capsid and Membrane proteins 28
 1.5.2.3 NS1 protein 28
 1.5.2.4 NS2a/2b, NS3, NS4a/4b and NS5 proteins 29

1.6 Future of dengue diagnosis 29

2. Aims and Objectives 30

3. Materials and Methods 33

3.1 Materials 35
 3.1.1 Bacterial strains 35
 3.1.2 Expression plasmids 35
 3.1.3 Primers and synthetic genes 36
 3.1.4 Restriction endonucleases and DNA modifying enzymes 37
 3.1.5 Sera samples 37
 3.1.6 Kits, markers, immunochemicals and other consumables 37
3.2 Methods

3.2.1 Construction of r-DME-gene expression vectors

3.2.1.1 Cloning in pQE-60 and pMALc2x vectors

3.2.1.2 PCR analysis

3.2.1.3 Restriction digestion

3.2.2 Induction and localization of rDME proteins

3.2.2.1 Cell growth and induction

3.2.2.2 Localization of proteins

3.2.3 Purification and characterization

3.2.3.1 Ni-NTA affinity column chromatography

3.2.3.2 Solubility of r-DME proteins

3.2.4 Evaluation of r-DME proteins as diagnostic intermediates

3.2.4.1 Immunoblot assay

3.2.4.2 Rapid strip test

3.2.4.3 ELISA

3.2.5 Other methods

3.2.5.1 Computer assisted studies

3.2.5.2 Peptide synthesis

3.2.5.3 ELISA with pin bound peptides

3.2.5.4 Polyacrylamide gel electrophoresis

3.2.5.5 Western analysis

3.2.5.6 Preparation of competent E. coli cells

3.2.5.7 Protein estimation
4. Results

4.1 The IgG-specific recombinant dengue multiepitope (r-DME-G) protein

4.1.1 Gene design and protein expression
 4.1.1.1 Gene design and synthesis
 4.1.1.2 Cloning of the gene
 4.1.1.3 Expression of the protein in *E. coli*
 4.1.1.4 Purification of the protein

4.1.2 Characterization of the protein
 4.1.2.1 Solubility
 4.1.2.2 Western blot and Immuno reactivity

4.1.3 Evaluation of protein as dengue diagnostic intermediate

4.1.4 Conclusions

4.2 The IgM-specific recombinant dengue multiepitope (r-DME-M) protein

4.2.1 Gene design and protein expression
 4.2.1.1 Gene design and synthesis
 4.2.1.2 Cloning of the gene
 4.2.1.3 Expression of the protein in *E. coli*
 4.2.1.4 Localization of the protein
 4.2.1.5 Purification of the protein

4.2.2 Characterization of the protein
 4.2.2.1 Solubility
 4.2.2.2 Western blot
 4.2.2.3 Immuno reactivity

4.2.3 Evaluation of protein as dengue diagnostic intermediate
 4.2.3.1 Reactivity of r-DME proteins to dengue patients’sera
 4.2.3.2 Rapid strip test with r-DME-M protein
4.2.4 Conclusions

4.3 Epitope scanning of the capsid and nonstructural protein-4A (NS4A) of dengue type 2 virus

4.3.1 Peptide selection

4.3.2 Identification of Capsid epitopes

4.3.3 Identification of NS4A epitopes

4.3.4 Conclusions

4.3.5 New generation IgG specific recombinant dengue multiepitope protein, r-DME-G2

4.4 IgM double copy of recombinant dengue multiepitope protein, r-DME-M2

4.4.1 Designing of r-DME-M2

4.4.2 Cloning

4.4.3 Expression, purification and characterization

4.4.4 Immuno reactivity

4.4.5 Conclusions

5. Discussion

6. Summary

7. References

8. Publications