
CHAPTER III

APPLICATION OF SPECTRAL DISTRIBUTION THEORY 

USING WILDENTHAL'S SD INTERACTION

3.1. WILDENTHAL'S UNIVERSAL SD INTERACTION

The uncertainty that lies In the applications of SDM, comes mainly from the

choice of the interaction Hamiltonian. In the past the predictions of SDM 

1) 2) 3)were compared ' with the corresponding shell model results using

different realistic interactions whenever they were available. However,

4)except for the universal sd interaction of Wildenthal the shell model

calculations for other interactions were not performed throughout the sd

shell. Also their predictions are not in very good agreement with

experimental data. On the other hand the Wildenthal's universal sd

interaction with fixed single particle energies and A-dependent two-body

0 3matrix elements, the dependence being (18/A) ' to take into account the

growing nuclear size, was extraordinarily successful in reproducing binding

energies, spectra, spectroscopic factors, B(E2), B(M1) and B(GT) values to

an unprecedented degree of accuracy throughout the sd shell. With this

success, on one hand one can use the interaction to predict unknown

properties like B(E4) values, study of neutron-rich sd shell nuclei like
24 32O , Mg, etc., and on the other hand, one can utilise this Interaction 

to test general approximate theories/models, like spectral distribution 

theory, which have much wider applicability for all nuclei across the 

periodic table by comparing their prediction using universal sd

interaction with the shell model results in the sd shell. Thus the
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comparisons of the calculations performed with universal sd interaction 

provide new stringent tests of the SDM theory. In the following we give a 

brief account6^ of our investigation of binding energies, spherical orbit 

occupancies and smoothed spectra using SDM with the universal sd 

interaction and compare them with the shell model results and experimental 

data.

3.2 APPROXIMATE SMOOTHED FORMS FOR THE DENSITY OF STATES

We mentioned in chapter II that though the action of a central limit 

theorem (CLT) in large spectroscopic spaces produces for p(E) an asymptotic 

Gaussian form, in actual applications one should be careful to take account 

of small departures from this asymptotic form and reconstruct p(E)
M I7\

incorporating these departures. A Gaussian probability function p_(x)G
is fully described by its first two moments, related to the centroid (e )

X

and the width (a ) , while in general the p(x) needs for its description, 

other shape parameters, expressible in terms of higher order central 

moments (p ) or cumulants (k ) with r > 2 . The lowest two shape parametersr r
are the skewness (7 = n /a3 ) and the excess = p /cr4-3) and it is seen

13 ^ 4

through detailed shell model calculations in fixed-JT spaces that the 

deviation of the shell model spectrum from the one using a corrected
1 ill

Gaussian density (with the skewness and excess corrections built in) is

small and can be treated as fluctuations . The departure from normality

using non-zero values of and becomes increasingly significant for

accurate predictions as x moves away from the centroid region i.e. in the
7)tail regions of the distribution of x. It is shown that typically, for 

values of |yi|, |y2|^ 0.3, the corrected Gaussian form is adequate within
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the region 3u from the centroid. But when the dimensionalities of the

scalar-m space or the sealar-mT spaces are large, the spectroscopically and

experimentally interesting region is beyond the 3o limit and one should

resort to configuration partitioning of the space.

Two different types of methods are in use in SDM for the

representation of the smoothed p(E) given its first four moments or

equivalently (e,a,7 ,7 ) . In the Gram-Charlier and Edgeworth

representations the density is expanded in a series in terms of derivatives

of an asymptotic density . In the Cornish-Fisher method a transformation of

variable is made such that the transformed variable has the asymptotic

density and the variable itself can be chosen to have a series

representation . We give the details of Gram-Charlier(GC), Edgeworth(EW)

and Cornish-Fisher(CF) representations in Appendix B and in the next

section, use the CF representations for the calculation of binding energy

and excitation spectra as it has a larger domain of applicability compared

7)to the GC and EW expansions .

3.3. EVALUATION OF BINDING ENERGIES, EXCITATION SPECTRA AND OCCUPANCIES

We define the smoothed distribution function corresponding to the density 

p(F,E) as

'E , .
p(r,E)dE . (3.3-1)

-00

Then FCF.co) ="'^'2^+2) “ this asymptotic value of F is equal to the total 

number of eigenvalues of H(m,r). It is then evident that the function 

F(F,E) counts the number of distinct eigenvalues upto the energy E and is a 

monotonic function increasing by unity at each distinct eigenvalue of

F(r.E) = d(m, F)
(2r + l)
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H(m,r). To evaluate the eigenvalue spectrum, we use, in actual computation 

d(m,D = d(m,T,T ) dimensionality and therefore define the smoothed
Z

distribution function as

F(E) =

m

I- (E)dE=) d(m,T,T7) P- (E)dE
mT ^ mT

m

(3.3-2)

Using this distribution function the energy value of the ith excited level 

E^ can be found by inverting the equation

i-1

FtEj) <2JJ+1)+ 5 d, (3.3-3)

j=l
where d^ = 2J^+1 is the degeneracy of the ith level. The procedure

6)described here is due to Ratcliff and is represented pictorially in the

fig.3.3-Fl. One can use the Gaussian form or Gaussian with

corrections in equation(3.3-2) and solve numerically ; the equation (3.3-3)

to get the ground state binding energy and excitation spectrum.

The occupancy of a single particle orbit s is the expectation
L

value of the number operator ng = [2jg+i] X B in the nuclear

many-body energy eigenstate |E>. Its expectation value ranges from 0 to the

8)maximum of (2j +1). The well known French-MacFarlane sum rules relate the
o

weighted sums of the spectroscopic factors to the occupancies, both for 

stripping and pickup processes. Thus the experimental single nucleon 

transfer reaction strengths when summed over all observed final states give 

a lower limit to the occupancy. In SDM, the occupancies can be calculated 

using equation (2.2-8) for the average expectation value of an operator. 

This is given at energy E by

nr(E) <E n E> (3.3-4)
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Figure 3.8-F1 ; Illustration for the Ratcliff procedure. An exact

distribution function represented by the staircase and its smoothed 

approximation (eq.(3.3-l)) along with the corresponding discrete spectra E. 

and Ej, are shown.
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(3.3-5)

= I <nrPp(H)>S P®(E)

CLT w .jj. S \
<nr> + <nr H >s ^

o (s)

In equation(3.3-5) the CLT result retains terms with v - 0 and 1 only.

We also note that H = (H-<H>S) is the centred Hamiltonian and s denotes the

relevant model space. The expressions for the occupancy upto the CLT limit

has been evaluated in various model spaces. In the proton-neutron scalar

space, "J(N/2 :proton)+ U(N/2 meutron) c U(N)), the proton occupancy in

9)single particle orbit j, is given by

n^ (E) = ft 1(2j+l)m 
p P

ft - m

C?(mp,mn)/c(mp.mn) E-<H>
rtlp’mn''

cr(mp’mn)

(3.3-6)

where ft=N/2 and C?(rtip,mn) is the traceless single-particle energy of a

proton in orbit j, as modified by its interaction with the remaining (m -1)

protons and mn neutrons. For its expression in terms of the two-body matrix

9)elements of H we refer to Potbhare and Pandya .

Similarly one can write the expression for occupancy in the scalar space 

[corresponding to the group U(N)] :

n (E) = <n > s s
m.E . m(N-n) J ~ m-1 ~ 1 E

N N(N-l) ] s N-2 s| cr(m) (3.3-7)

where E = (E - <H>s)/o(m) and e and X are traceless single-particle and
s s

* 9)single hole energies in the shell with degeneracy N and X is given ins

terms of the matrix elements of the two-body part of H. It is to be noted 

that the occupancy calculated using the linear (in energy) theory in 

equation (3.3-7) above may sometimes turn out to be negative in the ground
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state region, as the ground state is far below the centroid of the 

eigenvalue distribution and one needs further terms of the expansion to 

achieve better accuracy. However, the linear theory gives correct trends, 

the negative occupancy indicates a low or zero value of it.

On the other hand, if one partitions the model space into cofigurations 

i.e. (mp,mn) or (m.T) coresponding to group

l U(2jr+l)p + U(2jr+l)n c U(N) and £ U(Nr/2)xUr(2) c U(N)

respectively, remarkable accuracy as well as simplicity results. As the 

number operator npor n^ are scalar operators under configuration 

partitioning, only v = 0 term in the polynomial expansion survives and 

leads to the result,

VE> =
m ,m P n

I~ ‘ (E) m ,m ~P n s, .-z—-—m (m ,m ) 
I m(E) p p nm ,m P n

(3.3-8)

and for the configuration-T case, the occupancy of the s-th orbit at energy 

E is given by

ns(E) = l
I- (E) 
mT

m WE)
m ([m]) s (3.3-9)

34



TABLE 3.3-T1

Binding energies (BE) of nuclei in sd shell with universal sd interaction 

by spectral distribution methods along with experimental values and those 

by shell model. Column A represents BE obtained using the simple Ratcliff 

procedure, column B contains the BE corrected by integration up to an 

excited state, and column C. in addition, incorporates the 

correction as given by equation (B-8) of Appendix B.

Nucleus 
A Z

Expt.BE 
(in MeV)

BE by shel 1 model 
wi th univ. sd

interact ion 
(in MeV) A

BE by SDM

Un MeV)
B C

20 10 -40. 48 -40 49 -40. 04 -40 52 -38 51
21 10 -47. 24 -47 20 -49 67 -47 63 -46 24
22 10 -67. 60 -57 61 -62 88 -68 58 -66 50
23 11 -70. 68 -70 67 -73 39 -73 39 -70 43
24 12 -87 10 -87 09 -93 14 -89 08 -84 91
26 12 -94 43 -94 39 -101 83 -97 96 -94 01
26 12 -106 53 -106 54 -116 58 -109 59 -104 72
27 13 -118 79 -118 82 -127 76 -124 26 -119 20
28 14 -136 70 -136 94 -146 43 -139 99 -134 10
29 14 -144 17 -144 35 -166 36 -149 06 -143 33
30 14 -164 78 -154 91 -166 07 -159 79 -164 77
31 16 -167 75 -167 89 -178 46 -172 09 -168 29
32 16 -182 62 -182 63 -191 57 -185 64 -182 30
33 16 -191 26 -191 14 -198 44 -193 71 -191 65
34 16 -202 68 -202 65 -209 66 -204 27 -202 46
36 17 -215 32 -216 43 -219 41 -215 86 -2 16 .08
36 18 -230 41 -230 51 -232 91 -229 60 -229 04

In table 3.3-T1 we compare the binding energies of nuclei in the sd shell 

evaluated6^ by SDM using universal sd interaction with its shell model 

predictions as well as experimental values. From the column labeled A of 

table 3-3-T1, we can see that the simple Ratcliff procedure of eq.(3.3-3) 

gives bad results, where in some cases binding energies deviate from 

experimental values by 10 MeV or more. The integration1^ up to an excited 

state energy gives considerable improvement in the agreement (see column B
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Figure 3.3-F2 : Energy spectra obtained by SDM using the universal sd 

28 26interaction for Si and Mg are compared with experiment. In these

28„. 26,comparisons the first 1 state for “ Si and 3rd 4 state for “ Mg are used

as the reference states. Experimental data are from Endt and Van der

T ID Leun

36



of table 3.3-T1). We note that the experiments and compilations of von 

Egidy et al10^ are ideally suited for this type of calculations as they 

guarantee that in their data all levels up to and below a certain energy 

are all observed. For the present sd shell calculations we took the data 

from Endt and Van der Leun and other sources*We also display in column 

C of table 3.3-T1 the binding energies calculated by incorporating 

corrections due to non-zero as given by eq,(B-8) of Appendix-B.

Here we assume that the energies predicted by eq.(3.3-3) effectively arise 

from a single Gaussian, p (E) , and further take for granted that y (mT) =
mT 1

y (m) and y (mT) = 7 (m); at present 71(m) and 70(m) are the easiest to

calculate. Ideally one should evaluate the skewness and excess in (mT)

spaces and construct p~ (E) using these values. We did not adopt this
mT

rather detailed procedure. However, our simple method of including the

(7 ,y ) corrections reproduces the experimental trends remarkably well
1 2

throughout the sd shell. Almost all predicted values lie within 1 MeV of

the experimental (or shell model) values, except for the three nuclei in 

the lower half of the shell, where the differences are 2.0, 2.2 and 1.6 MeV
on 94 OR

for Ne, Mg and Si. respectively. Keeping in mind that the 

uncertainties due to fluctuation effects are about 1-2 MeV, the agreement 

can be considered to be quite satisfactory. We note here that the 

correction introduced due to nonzero skewness and excess replace the 

previous attempts to correct the binding energies by empirical terms

proportional to [™] and T(T+1)** in the lower and upper half of the 

sd-shell, respectively. The (7^7^ values, for the universal sd 

interaction in m=4, 8, 12, 16, and 20 particle space are (0.00, -0.30), 

(0.01, -0.20), (0.00, -0.21), (-0.06, -0.23), and (-0.15, -0.38),

37



respectively. All the ground state energies before (7 ,7 ) corrections are

lower than the experimental values, and the negative value of 72 pushes

them up and brings them close to the data.

One can utilize the Ratcliff procedure in determining not only the

ground state energy but in reproducing the low-lying excited state

spectrum. In fig.3.3-F2 we compare two such spectra obtained by using the
23 26universal sd interaction with the experimental spectrum for Si and Mg.

28 26 We see that the Si spectrum is fairly well reproduced but for Mg the

agreement is not so good. In principle, matrix diagonalization coupled with

statistical methods might be more appropriate for studying the low-lying

spectra; however, so far one does not have a sensible prescription for

doing that.

TABLE 3.3-T2

Ground state occupancies of ldr/0, 2s„ . . and ld.„ orbits as predicted by
5/2 1/2 3/2

shell model and by spectral distribution methods using the universal sd 

interaction.

A
Nucleus

Z ^5/2
By shell

Sl/2

Occupancies 
mode 1

d d
3/2 5/2

By SDM
S 1/2 d3/2

21 10 3.496 0.998 0.607 4.306 0.543 0.151
22 10 4.575 0.813 0.612 5.222 0.607 0.171
23 11 5.316 0.912 0.772 5.960 0.727 0.314
24 12 5.980 0.894 1.124 6.793 0.805 0.402
25 12 7. 173 0.805 1.022 7.408 1.017 0.575
26 12 8.018 0.909 1.074 8.149 1 . 192 0.659
27 13 8.894 1.023 1.082 8.811 1 . 336 0.863
28 14 9.246 1.408 1.346 9.567 1.482 0.961
29 14 10.106 1.679 1.214 9.943 1 . 768 1.289
30 14 10.472 1.892 1.636 10.418 2.020 1.661
31 15 10.838 2.422 1.741 10.767 2.285 1.962
32 16 10.842 2.836 2.322 11.143 2 . 680 2.277
33 16 11.233 3.314 2.464 11.326 2.796 2.879
34 16 11.371 3.409 3.220 11.644 3.033 3.302
35 17 11.477 3.635 3.988 11.743 3 . 286 3.973
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Figure 3.3-F3 : s1/9 ground state occupancies by spectral distribution

methods using universal sd as well as RIP1^. KLS-R13^ and K+12FP*“^

interactions compared with experimental values. The results for PW, K+12FP, 

RIP. and KLS-R interactions and experimental data are taken from Potbhare
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In Table 3.3-T2 we compare the predictions for the occupancies of

the spherical orbits Id,,.,,, 2s, .and ld„,„ given by SDM with those by shell

model using the universal sd interaction. Here we present results for nuclei

with five or more particles (or holes) because for fewer particles the

Gaussian approximation for p_ (E) is not a good one . In the calculations of
mT

occupancies we used binding energies as given by column B of Table 3.3-T2 as

we do not know ^(m.T) and ^(m.T) and column C calculations are not exact.

The SDM dg/2 occupancy is low for lighter nuclei in the lower half of the sd

shell, but the agreement becomes reasonably good near the middle and in the

upper half. Comparisons of calculated occupancies for the s orbit with

experimental values obtained from stripping and pickup reactions were 

9)compared earlier using different interactions. For example, the results

12)with radial integral parametrized (RIP) , Kahana, Lee, and Scott

(renormalized) KLS-R^\ Preedom and Wlldenthal (PW)14^, and K+12FP12^ sd

interaction are shown in fig.3.3-F3 along with the present calculations

using universal sd interaction, and they are compared with the experimental

2si/2 occuPanc*es- The data clearly select not only the PW Interaction, as
9)pointed out by Potbhare and Pandya , but also the universal sd interaction.

15)Potbhare and Tressler, also in their recent study on the occupancy and 

single-nucleon strength function in the 2s Id shell using single-nucleon 

transfer sum rules have selected out of many available sd interactions only 

the PW and the universal sd interactions when they compared the s^2 

occupancies and the occupancy dependent single particle energies with 

experimental values. In this work they also calculated the centroids and 

widths of the single nucleon transfer strength function. In this study we 

find that using universal sd interaction, the spectral distribution methods 

explain the ground state properties like binding energies and orbit
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occupancies rather well, even though, a priori, one does not expect this. In 

particular we find that to locate energies of low-lying states, the 

deviations of the density of states from its asymptotic Gaussian form as 

measured through the nonzero skewness and excess supply the corrections in 

totally parameter-free form. We point out that the evaluations of the 

moments in fixed (J,T) spaces may improve the results even more. We also 

mention that the availability of shell model results on occupancies as a 

function of the excitation energy will allow one to make better tests of 

SDM. We conclude from our studies that future work, using SDM in the sd 

shell on excitation strengths and sum rules, should employ the Wildenthal's 

universal sd interaction.
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