CHAPTER VI
BETA DECAY RATES OF A > 60 FP SHELL NUCLEI FOR PRESUPERNOVA STARS

6.1 MOTIVATION
The role of beta decay of some neufron-rich A>60 nuclei in

the sllicon-burning stage of presupernova evolution is receiving a falr

1),2),3)

amount of attention recéntly In earller stellar evolution

calculations these were not considered on the surmise of negligibly small

abundances of the nuclei involved. But recently Aufderheide et 312) argue

9 0

that at typical temperatures (2—-5 X 10 K) and densities (108- 109 g/ce)

during the advanced stages of pre—SN evolution the abundances of some Cu

and Co isotopes (in particular 63Co) are not very small. With the

approximate abundances of Aufderhelde et al at a typical temperature of T =

? K and p = 108 g/ce and the electron fraction Ye = (.44, the betsn

1) 6

4 X 10

decay of 6300 will lead to an increase of Ye at the rate of 1.3 X 10

s.1 . As the contraction phase lasts for 4 X 104 s, this could increase Ye
appreciably. But on the other hand these beta decays will result in cooling
through - the 1loss of the neutrinos produced and this results in the
reduction of electron pressure and consequently in the reduction of the
size of core that can support itself. One should also keep in mind that
lower temperatures cut off the abundances of the odd-odd and odd-A nuclei

fast as demonstrated by Aufderheide et al‘?')

. So the only way one can get an
answer to the question of the importance of the beta decays in the
Si-burning stages Is by studying this process self-consistently by

incorporating the beta decay rates of the relevant nucleli into the stellar

)

evolution code. Fuller, Fowler and Newman (FFN) made a detailed study4 of

86



the beta decay and electron capture rates using simple  shell model
arguments supplemented by experimental information for nuclel with A < 60
and this is immensely useful for the evolution calculations. Detailed shell
model calculations can give the most reliable estimates of these decay
rates but unfortunately because of the large dimensionality of the spaces
involved for the fp shell nuclel, Hamiltonian diagonalisation and
calculation~ of B decay strengths is a formidable job. Bloom and FullerS)
performed shell model calculations for some A < 60 nuclel using truncated
basis space and their results are the most detailed theoretical study of
the strength distribution fof the fp shell nuclei. On the other hand the
results of Gamow-Teller glant resonance studies through (p,n) reactions
experimentally give information about the same strength function and one of
the key features of this is the observation that the total strength in the
low energy region of the resonance is quenched compared to its sum rule
value. This suggests that any theoretical evaluation of strength should be
multiplied by an appropriate quenching factor before coxﬁparlson with
experiments. For nuclel with A > 60 no shell model results are avaijlable

yvet. Aufderhelde - et a12)

used experimental logft values along with
detalled balance arguments to generate the decay rates of some Co, Cu
isotopes. But the contribution of the excited states to these rates could
not be probed this way.

In this chapter we develop a simple model for the average
beta strength distribution of the quenched sum rule strength and calculate
rates using 8 continuous approximation for the final states. This can
easily incorporate the -effects of the excited states of the mother nucleus.

On the other hand evaluation of beta decay halflives in agreement with

experimental observatlions has always been a challenging problem for nuclear
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theorists. Among the microscopic theories best results are obtained by
- performing complete shell model  diagonalisation calculations) for A £ 40

nuclel and doing quasiparticler RPA (QRPA) for heavier nucle17)'8)

. The QRPA
methods for the ground state -are -quite successful all over the perlodic
table. Their extension to non-zero temperature situation for the rates has
not been done yet. On ‘the other hand, the gross theory of Takahashi and
Yamadagi) uses a statistically - averaged allowed and forbidden strength
function and makes global best fits of its parameters to experimental
halflives of a large number of nuclei., In our model we first calculate the
allowed beta decay sum rule strength using the form developed in chapter IV
[equation (4.2-8a)] , with occupancies evaluated by spectral distribution

the'orylo) ‘

and then assuming a Gaussian form for the strength distribution,
estimate its width by a best fit to halflives of a number of A > 60 nuclei.
The comparison of the predicted halflives with the experimental ones gives

one an idea asbout the accuracy of the predicted decay rates

6.2 THE MODEL
The ft value of an allowed beta decay from the state |i> of

the mother to the state |f> of the daughter is given as

6250 sec
ft = = (6.2-1)

[ B(F) + [g A/gv}z B(GT)? :

where 8y + 8 A 8re the vector and axial-vector coupling constants and the

" Fermi (F) -and Gamow-Teller (GT) transition probabilities B(F) and B(GT) are
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defined as

__1 oo
B(F). = @I l <Jf|| Op ||Ji> I
— 1 -
B(GT)_= CRIESY ! <JfH Oar I3 !

(6.2-2)

In equation (6.2-2) Je + J; are the final and initial J values and O, and -

F

OGT are the Fermi and GT operators [ OF = E t:t(i) ‘for Bi decay, where E{6)
i .

stands for the Isospin wvector of the ith nucleon]. To calculate the ground
state beta decay halflife one should consider all final states [f> (with

energy Ef) which are allowed by the Q-value. Thus one has

- 6260 sec (6.2-3)

tuz 5
2( Bp(Ep) + (2,/8,)° Byyp(Ey) J £(Q-Ej)
t

We assume that the final level density is large enough to replace the

summation over f by an integration over the Q-value. This gives

- = 6250 sec (6.2-4)

1/2 ’ ‘n N ¢ n p p
‘ I ( IME D[+ (g,/8,)% | Mgp(E )| J f(Q~E )dE
0

In equation(6.2-4) | M I2 (E) p(E ), the level density

r(eT)(E ) Brem)

—_ J p(E )dE in the continuous sapproximation. In

1

p(E ) coming because }:
B
our model we replace the actusl microscoplc strengths by a statistically

¥

averaged smoothed strength function. In the pre—SN situation with non-zero
temperature (T) mot only the ground state but the excited states also make

contributions to the decay rate and so we sum the strengths over initial
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excited states as well with the welght factor exp(-Ei/kT) times (2J1+1) and
divide it by the nuclear partition function G. Ei and Ji are the energies
and spins of the Iinitial states and are taken from the experimental

spectrum wherever known and G = z (2Ji+1) exp(—Ei/kT). Then the decay rate
i
is expressed as

- ....1 N
(6250 sec) o -
R 2 (83,+1) exp(~B,/kT) X

i

A = In2

Q . (6.2-5)

i i,y 12 20 el o g2 P
J ( iM];(E ¢+ (g,/8y) | M (E ) ] £(Q;-E )dE
0

The Q-value for the excited states are Qf: Q+E1. The Fermi strength is
concentrated in a very narrow resonance centred around the Isobaric Analog
State (IAS) for the ground as well as the excited states and the total
Fermi strength for beta decay Is given by (N-Z) where N(Z) is the neutron
(proton) number. For nuclei with N > Z, the Fermi transition for B+ decay
or electron capture is ruled out by isospin selection rule. For the
position of the IAS, the coulomb displacement energy Ac is taken as Ac =
1.44 7 A”Y3 Mev!D | It is the coulomb dnteraction that makes the Fermi
strength spread and for the width of the resonance we use the expression %

1/3

= 0.167 Z A MeV. This leads to vanishingly small contribution to B

—decay halflives and transition rates as the narrow Fermi resonance lies
high up In energy. For the Gamow-Teller strength function, we assume the
statistically averaged smoothed form is a Gaussian in energy EI. This is a
reasonable assumption to make for the global behaviour of the strength
distribution as according to the spectral distribution theory the strength

)

densitylz (i.e. the average strength times the density of states) has an
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asymptotic bivariate Gaussian form in the initial and final energles in
large spaces. This was discussed in chapter II and V. But one notes here
that the actual experimental or- shell model- strength for specific states
may -deviate from this global smoothed asymptotic form showing microscopic
structure. To minimise this deviation we use the width of the Gaussian
strength as a parameter and fit the experimental halflives with the
predictions of- the model for a number of nuclei. More accurately the width
of the resonance cs has two parts, osz = ocz + oNZ, the first part coming
from the spreading due to coulomb -force, and the dominant second part
coming from the spreading due to the nucleon—nucleon interactions. We vary
N for the best fit of a number nuclei's calculated halflives to their
experimentally determined values. Two more quantities are needed to fix the
GT strength; firstly the sum rule strength that gives the area below the
Gaussian and the second one is the centrold of the distribution. We note
that the physically accessible fegion through the Q-value of the ground
state (the excited states) covers only the tall of the Gaussian strength
distribution. For the Gamow-Teller B— sum rulé strength from the Initial

state |i> we use the expression (4.2-8a) of chapter IV which is seen to be

a fair approximation in fp shell

. Q6T _ + g -
‘ SB = i OB 10,n(8) |i>

=3ZHZ

nlj)

12
Wiy - a7 v _
CI‘ll (l <Iln]j >J <nnlj > (6.2-6)

.'> and
1§

) (nzu> are Vthe fractionai occupancies of the proton orbit (nlj ) and the

i e . ql/2 , .
where Cnl = (—1)j ) {2(2j+1)(2j'+1)] w({l1/2j1:) 1/2), <nn

neutron orbit (nlj) in the state |i>. Zn is an empirical quenching factor
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for a realistic description of the decay. Followiﬁg Aufderheide et alz) we

use the value of 0.6 for Zn’. The expectation value of the {fractional

neutron number operator nv in the state of energy E Is given in the

nlj
framework of SDM by
m mE Lo 8w’ (o ,m)
v “at O p’n nlj’ p’ n
<nn]J> - I (E) o v -
o~ m_,m N ..
P n nlj
m_,m
P’ n

(6.2-7)
These are the expressions we use to evaluate the GT sum rule strength in

eq.(6.2-6). Finally for the centroid of the GT strength distribution we use

)

the relation developed by Nakayama et 9.113 which gives a best fit to the

centroid observed through (p,n) reactions. The expréssion is
1/8

€ =€ + 26 A

GT IAS ~18.6 (N-Z)/A (6.2-8)

where € is the centroid energy sand € is the energy of the IAS.

GT IAS
Eq.(6.2-8) is wvalid for the strength- distribution from the ground state,
For the excited state decays- we just extend the isobaric analog argument
and add the excitation energy of the initial state to fix the centroid of
the GT distribution. The -phase space factor appearing in eq.(6.2—-4) Iis

glven by

€

f(T;u.E&) = J
1

0 F(z.e)e(ez-l)l’z(eo-e)z

. 1+expl (u—€)/KT] de (6.2-9)

where we use a Fermi-Dirac distribution for the electron gas outside the

nuclei with the chemical potential p within the stellar environment at
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temperature T. In the RHS of eq.(6.2-9) the maximum eénergy 60 is expressed
in terms of the electron rest mass energy ( € = Eo-/mocz. where m, is the
rest mass of the electron ). F(Z,€) is the coulomb -correction factor and we
use the Schenter and Vogel approximationM) for it (as uséd by Aufderheide
et al).

To determine the chemical potential we note that at the density and
temperature under consideration, the pressure Is dominated by relativistic
electrons and the net density of electron—positron pailrs (me & 0) is given

byls)

}‘ d 'k
n.=pY =2 - (f_ -t } (6.2-10)
¢ € (Zn):3 N e e+

-1
where f'i = f{(k ¥ pe)/kT}: ( T + exp [ (k ¥ ue)/kT D . the factor 2
e

belng for spin and ue = U _ By is the electron chemical potential. For
e e

this discussion we take I = ¢ = 1 and as the distributions are isotropic

one gets from eq.(6.2-10)

T3

,ne = -;-5 ( Fz‘—(ne) - Fz("‘ne) ] (6.2—11)

o

where.f]e = ue/kT and the Fermi integral Fn(n) = [ dx x" f(x-n).

0
The quantity Gn(n) = Fn(n) —(-1)" Fn(-n) is evaluated by recursive integral

and one fj.ndsls), Gz(n) = n3/3 + nz /3 . We find the root of the 3rd order

equation for n,

3
__.._3ns pY = n3 + 12 n ' (6.2-12)

and use that “e for given p, T .and Ye'
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6.3 RESULTS AND DISCUSSIONS

To test the predictions of the model and to fix the
parameter Oy We calculate the halflives of a number of nuclei in the fp
shell with A > 60. The free decay 1is the p —>0, T—>0 Ilimit of our

2
calculations. We minimise the quantity Z [ loglo[ T:j:(i) / ’C';E/’;c(i) J ]

calc

i o T
as a function of o, where T

(i) and r:’/‘g(i) stand for the calculated

and experimental halflife respectively for the ith nucleus. For the 13

nuclei considered i.e. 69()11. 68Cu. 6?,Ni, 660u. 65Ni. 6500. 6400, 6300,

%3re, %2co, ®%re, ®%Mn, ®'Fe the best fit is obtalned with o = 6.3 MeV. In

!

table 6.3—~T1 we compare the halflives thus calculated with experimental

values. The table also gives the predictions wherever available of Klapdor

)

et 9.17 by the microscopic quasiparticle random phase approximation (QRPA)

7).8) as well as by the gross theoryg).

64

calculations We find from the table

61

6.3—T1 that our predictions for the nuclei 65Ni, Co, and Fe are off by

an order of magnitude and clearly the use of a Gaussian with a global
effective width for the strength distribution is not the correct approach
for these nuclel. We see that the use of a negative skewness of ¥ = ~-0.3
for the 64Co strength distribution and use of the Edgeworth expansion with
this skewness brings the calculated hsiflife to a value as low as 0.69 sec.
On the other hand increasing the width to 7 MeV brings it down only to 1.76

sec,

The rates for all the nuclei can now be calculated‘ as functions

of density and temperatures using GN = 6.3 MeV. In table 6.3—-T2 we give the

examples of the rates for four of the nuclei, 690u, 67Ni, 6300, and 62Co

for the ranges of temperature and density typical of the pre-~SN burning

stage. The grid points for temperature and density used are T = 2 X 109, 3

9 9

2% 107, 4 x 107, 5 x 107 and 6 x 10° %K and log, ~0.5, -1.0, -1.6,

Pip =
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0 g/cc. The rates

~2.6 and -3.0 respectively. Pio is the density in 101
given in table 6.3-T2 are for Ye = 0.50. Changing Ye gives rise to
different chemical potentials and this allows a finer gridding of the
parameter p. The rates for all the nucleli show the general feature that the
rates decrease with Increasing density. This is easy to understand —
increasing the density Increases the chemical potential of electrons
outside the nuclei impeding the decay process. The Fermi function, f is
very strongly dependent on the @Q—-value — actually for free decays one sees
that in the absence of F(Z,E), it goes as the fifth power of the Q@Q-value.
As the excitation energy in the daughter nucleus increases, the Q-value
decreases and so the Fermi function goes down. But on the other hand the GT
strength rises because one goes higher up from the tail region. Thus there
is a competition between two oppo_sing effects. Through the continuous
approximation of the level density of the 'daugh.ter nucleus we take into
account all these features in an averaged manner to give rise to realistic

decay rates.

) 63

The decay rates as given by Aufderheide et alz for ““"Co and 62 Co with p =

102 g/ce are 1.6 x 1072 67!, 1,14 x 1071

1072 57! and 2.56 x 107}

s—1 for T = 8 X 109 0K and 1.69 X

90K. The corresponding ground

state decay rates from our calculation are 6.38 X 1078 57 318 x 1072 571

for T = 8 X 10°°K and 7.568 x 102 s ! and 3.35 x 10 2 s Y for T = 5 X

s for T = 6 x 10

109°K. We see from table 6.3—T2 that the contributions from excited states

can make the rates increase by a factor as high as 12.1 (as seen for 690u

with log Pio= -0.5 and T = 6 X 109 0K). These contributions increase with

higher densities as well as wususlly with higher temperatures (due to
-E./kT

e i factor) except for some cases of high p where the increase in the
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ground state rate relative to the excited states coming from the T
dependence in the f~factor more than cancels this increase. One should try
to include excited states in calculations wherever they are known

2) does not have this feature.

experimentally. The work of Aufderheide et at
In the shell model, extensive and-time consuming calculations are needed to
estimate how the rates get affected by excited states but in our

statistical approach this is estimated quite easily.

The global width of the Gamow~Teller giant resonance is somewhat on the
high side compared to the widths observed in (p,n) experiments which is
about 4-6 MeV. But the nuclel we consider are the neutron rich ones in the
upper half of the fp shell. The closest cases studied experimentally are

54,56 68’60Ni 17) 9)

Fe and In the gross theory 8 Gaussian strength
distribution for the Gamow-Teller excitation gives a width of 6 MeV after
fitting the beta decay halflives globally over the whole periodic table.
But this method among other things differs from ours in the calculation of
the sum rule strength. Thus we feel that a careful evaluation of the
Gamow-Teller resonance width for neutron-rich nuclei with A > 60 both

theoretically and experimentally will be very useful for this problem.
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Table 6,3-T1

Comparisons of calculated and experimental halflives

Nue Lews Halflife ’cuz(sec)

Experimental Calculated

Qurs Gross theory QRPA

%9 0u 180 261.4
68011 31 22.0
660u 306 312.1
87n1 21 47.0 94 23
66Ni 9072 728.38
6260 90 16.1
63¢0 27.4 52.1
6400 0.3 3.63 10.0
6600 1.26 5.66 8 8.5H9
61Fe 360 34.5
62Fe 68 183.4
63Fe 4.9 3.49 10 14.8
%2)n 0.88 1.05 2 0.773
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