
CHAPTER VI

BETA DECAY RATES OF A > 60 FP SHELL NUCLEI FOR PRESUPERNOVA STARS

6,1 MOTIVATION

The role of beta decay of some neutron-rich A>60 nuclei in

the silicon-burning stage of presupernova evolution is receiving a fair
1) 2) 3)amount of attention recently . In earlier stellar evolution

calculations these were not considered on the surmise of negligibly small
2)abundances of the nuclei involved. But recently Aufderheide et al argue

that at typical temperatures (2-6 X 10^ °K) and densities (10**- 10^ g/cc)

during the advanced stages of pre-SN evolution the abundances of some Cu
S3and Co isotopes (in particular Co) are not very small. With the

approximate abundances of Aufderheide et al at a typical temperature of T =

4 X 10^ K and p = 10** g/cc and the electron fraction Y = 0.44, the beta
©

on i \ _ />
decay of Co will lead to an increase of Yg at the rate ; of 1.3 X 10
-1 '4s . As the contraction phase lasts for 4 X 10 s, this could increase Yg

appreciably. But on the other hand these beta decays will result in cooling

through the loss of the neutrinos produced and this results in the

reduction of electron pressure and consequently in the reduction of the

size of core that can support itself. One should also keep In mind that

lower temperatures cut off the abundances of the odd-odd and odd-A nuclei
2)fast as demonstrated by Aufderheide et al . So the only way one can get an

answer to the question of the importance of the beta decays in the

Si-burning stages is by studying this process self-consistently by

incorporating the beta decay rates of the relevant nuclei into the stellar
4)evolution code. Fuller, Fowler and Newman (FFN) made a detailed study of
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the beta decay and electron capture rates using simple shell model

arguments supplemented by experimental information for nuclei with A i 60

and this is immensely useful for the evolution calculations. Detailed shell

model calculations can give the most reliable estimates of these decay

rates but unfortunately because of the large dimensionality of the spaces

Involved for the fp shell nuclei. Hamiltonian diagonalisation and

calculation of |3 decay strengths is a formidable job. Bloom and Fuller6^

performed shell model calculations for some A < 60 nuclei using truncated

basis space and their results are the most detailed theoretical study of

the strength distribution for the fp shell nuclei. On the other hand the

results of Gamow-Teller giant resonance studies through (p.n) reactions

experimentally give information about the same strength function and one of

the key features of this is the observation that the total strength in the

low energy region of the resonance is quenched compared to its sum rule

value. This suggests that any theoretical evaluation of strength should be

multiplied by an appropriate quenching factor before comparison with

experiments. For nuclei with A > 60 no shell model results are available
2)yet. Aufderheide et al used experimental logft values along with

detailed balance arguments to generate the decay rates of some Co, Cu 

isotopes. But the contribution of the excited states to these rates could 

not be probed this way.

In this chapter we develop a simple model for the average 

beta strength distribution of the quenched sum rule strength and calculate 

rates using a continuous approximation for the final states. This can 

easily incorporate the effects of the excited states of the mother nucleus. 

On the other hand evaluation of beta decay halflives in agreement with 

experimental observations has always been a challenging problem for nuclear
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theorists. Among the microscopic theories best results are obtained by
£*\

performing complete shell model diagonalisation calculation ; for A £ 40

7) 8)nuclei and doing quasiparticle RPA (QRPA) for heavier nuclei . The QRPA

methods for the ground state are quite successful all over the periodic

table. Their extension to non-zero temperature situation for the rates has

not been done yet. On the other hand, the gross theory of Takahashi and 

9)Yamada uses a statistically averaged allowed and forbidden strength

function and makes global best fits of its parameters to experimental

halflives of a large number of nuclei. In our model we first calculate the

allowed beta decay sum rule strength using the form developed in chapter IV

[equation (4.2-8a)] , with occupancies evaluated by spectral distribution 

10)theory and then assuming a Gaussian form for the strength distribution, 

estimate its width by a best fit to halflives of a number of A > 60 nuclei. 

The comparison of the predicted halflives with the experimental ones gives 

one an idea about the accuracy of the predicted decay rates

6.2 THE MODEL

The ft value of an allowed beta decay from the state |i> of 

the mother to the state |f> of the daughter is given as

6260 sec

B(F) + [8a/ev, B(GT)
(6.2-1)

where gv , g^ are the vector and axial-vector coupling constants and the 

Fermi (F) and Gamow-Teller (GT) transition probabilities B(F) and B(GT) are
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defined as

B(F) = 1
(2J4+1)

B<GT) = (27^1)

2

2

(6.2-2)

In equation (6.2-2) J„ , J. are the final and initial J values and 0„ and
ii r

0GT are the Fermi and GT operators ^ Op = ^ t±(i) for 0* decay, where t(i)

i
stands for the isospin vector of the ith nucleonj. To calculate the ground 

state beta decay halflife one should consider all final states |f> (with 

energy Ef) which are allowed by the Q-value. Thus one has

x
1/2

_______________6260 sec_______________
J. [ Bp(Ef) + (gA/gy)2 BQT(Ef) j f(Q-Ef) 

f

(6.2-3)

We assume that the final level density is large enough to replace the 

summation over f by an integration over the Q-value. This gives

6250 sec
1/2 Q |M (e" ) |2 + (gA/gv)2 | M (e' > |2 I f(Q-E )dE

(6.2-4)

>A' *V GT
/ /

In equation(6.2-4) | 
/

p(E ) coming because

MF(GT)
I->

(e’> I2 =
\

/

p(E )dE
E

t /

Bp(GT)^E ^ P(E ), the level density 

in the continuous approximation. In

our model we replace the actual microscopic strengths by a statistically 

averaged smoothed strength function. In the pre-SN situation with non-zero 

temperature (T) not only the ground state but the excited states also make 

contributions to the decay rate and so we sum the strengths over initial

89



excited states as well with the weight factor exp(-Ej/kT) times (2J^+1) and

divide it by the nuclear partition function G. and are the energies

and spins of the initial states and are taken from the experimental

spectrum wherever known and G = ^ (2J^+1) exp(-E./kT). Then the decay rate

i
is expressed as

X = ln2 (6260 sec) (2^+1) expC-E^T) X

Q.
[ |Mp(E )|2 + (gA/gy)2 | M-qT(E<)|2 j HE

(6.2-6)

The Q-value for the excited states are Q*= Q+E^. The Fermi strength is 

concentrated in a very narrow resonance centred around the Isobaric Analog 

State (IAS) for the ground as well as the excited states and the total 

Fermi strength for beta decay Is given by (N-Z) where N(Z) is the neutron 

(proton) number. For nuclei with N > Z, the Fermi transition for 0+ decay 

or electron capture is ruled out by isospin selection rule. For the 

position of the IAS, the coulomb displacement energy Ac is taken as Ac = 

1.44 Z A ^ MeV11^ . It is the coulomb interaction that makes the Fermi

strength spread and for the width of the resonance we use the expression o

— 1/3 —
= 0.157 Z A MeV. This leads to vanishingly small contribution to p

-decay halflives and transition rates as the narrow Fermi resonance lies

high up In energy. For the Garaow-Teller strength function, we assume the
/

statistically averaged smoothed form is a Gaussian in energy E . This is a

reasonable assumption to make for the global behaviour of the strength

distribution as according to the spectral distribution theory the strength 
12)density (i.e. the average strength times the density of states) has an
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asymptotic bivariate Gaussian form in the initial and final energies in

large spaces. This was discussed in chapter II and V. But one notes here

that the actual experimental or shell model1 strength for specific states

may deviate from this global smoothed asymptotic form showing microscopic

structure. To minimise this deviation we use the width of the Gaussian

strength as a parameter and fit the experimental halflives with the

predictions of the model for a number of nuclei. More accurately the width
2 2 2of the resonance o has two parts, o = a + a the first part comings sew

from the spreading due to coulomb force, and the dominant second part 

coming from the spreading due to the nucleon-nucleon interactions. We vary 

oN for the best fit of a number nuclei's calculated halflives to their 

experimentally determined values. Two more quantities are needed to fix the 

GT strength; firstly the sum rule strength that gives the area below the 

Gaussian and the second one is the centroid of the distribution. We note 

that the physically accessible region through the Q-value of the ground 

state (the excited states) covers only the tail of the Gaussian strength 

distribution. For the Gamow-Teller 0 sum rule strength from the initial 

state |i> we use the expression (4.2-8a) of chapter IV which is seen to be 

a fair approximation in fp shell

Sp1 = <1| oJT<0 )0GT(P ) |i>.+

= 3Z.n EI °ni H1 - <%]/>) <nV (6-2-«
n/JJ

where = (-1)^
nl 2(2j+l)(2j +1)

1/2 nW(ll/2jl:j 1/2), and

<nnlj> are t*le fract*onal occupancies of the proton orbit (nlj ) and the 

neutron orbit (nlj) in the state |i>. ZR is an empirical quenching factor
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for a realistic description of the decay. Following Aufderheide et al we 

use the value of 0.6 for Z The expectation value of the fractional 

neutron number operator n^ in the state of energy E is given in the 

framework of SDM by

25

„ m m_,En'E = y *m ,m (E) ra^.-Cm ,m ) 
p n nlj p n

m ,m P n

Im m (E) 
mp,ran Nnlj

(6.2-7)

These are the expressions we use to evaluate the GT sum rule strength in

eq.(6.2-6). Finally for the centroid of the GT strength distribution we use
13)the relation developed by Nakayama et al which gives a best fit to the 

centroid observed through (p,n) reactions. The expression is

€gt = €ias + 26 a 1/3 -18«6 W_z)/A (6.2-8)

where € is the centroid energy and € is the energy of the IAS.
\j 1 iAo

Eq.(6.2-8) is valid for the strength distribution from the ground state. 

For the excited state decays we just extend the isobaric analog argument 

and add the excitation energy of the initial state to fix the centroid of 

the GT distribution. The phase space factor appearing in eq.(6.2-4) is 

given by

f(T,M,Ea)
0 F(Z.€)e(€2-l)1/2(€o-€)2 

l+exp[(p-e)/kT] de (6.2-9)

where we use a Fermi-Dirac distribution for the electron gas outside the 

nuclei with the chemical potential p within the stellar environment at
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temperature T. In the RHS of eq.(6.2-9) the maximum energy is expressed
2

in terms of the electron rest mass energy ( gq = BQ/m0c , where mQ is the

rest mass of the electron ). F(Z,e) is the coulomb correction factor and we
14)use the Schenter and Vogel approximation for it (as used by Aufderheide 

et al).

To determine the chemical potential we note that at the density and 

temperature under consideration, the pressure is dominated by relativistic 

electrons and the net density of electron-positron pairs (mg 0) is given

n = pY =2 e e

r d3k

(2rc)'
(6.2-10)

where f ,= f< (k T
e* l

Me)/kT} = (
f + exp (k t jie)/kT

-1
, the factor 2

being for spin and p = p _ = p is the electron chemical potential. For© ” » e e
this discussion we take tr = c = 1 and as the distributions are isotropic 

one gets from eq.(6,2-10)

n
ft

W ' F2l'V (6.2-11)

where. 17 p /kT and the Fermi integral F (17) e n

.00

dx xn f(x-ry).

The quantity Gn(r|) s Fn(r}) -(-l)n F (~n) is evaluated by recursive integral 

and one findsG2(n) = + ^3 ' We root t^ie 3rci oriier

equation for 17.
p Y = rj3 + tc2 17 (6.2-12)

rjlO> e

and use that pg for given p, T .and Y .
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6.3 RESULTS AND DISCUSSIONS

To test the predictions of the model and to fix the 

parameter a we calculate the halflives of a number of nuclei in the fp
N

shell with A > 60. The free decay is the p ----->0, T----->0 limit of our

calculations. We minimise the quantity ^ £ ^Ogio( ti/2^ ^ )

i
C 8 1. O 8 X D

as a function of cr , where r (i) and t .^(i) stand for the calculated
N 1/2 1/2

and experimental halflife respectively for the ith nucleus. For the 13

. . , , , . 69„ 68_ 67lT. 66„ 66»r. 66„ 64„ 63„nuclei considered i.e. Cu, Cu, Ni, Cu, Ni, Co, Co, Co,

®3Fe, ®2Co, 62Fe, 62Mn, 6*Fe the best fit is obtained with o = 6.3 MeV. In
N

table 6.3-T1 we compare the halflives thus calculated with experimental 

values. The table also gives the predictions wherever available of Klapdor
7)

et al by the microscopic quasiparticle random phase approximation (QRPA)

7) 8) 9)calculations ’ as well as by the gross theory . We find from the table

6.3-Tl that our predictions for the nuclei Ni, *Co, and iFe are off by

an order of magnitude and clearly the use of a Gaussian with a global

effective width for the strength distribution is not the correct approach

for these nuclei. We see that the use of a negative skewness of irj = -0.3

64for the Co strength distribution and use of the Edgeworth expansion with 

this skewness brings the calculated halflife to a value as low as 0.69 sec. 

On the other hand increasing the width to 7 MeV brings it down only to 1.76 

sec.

The rates for all the nuclei can now be calculated as functions 

of density and temperatures using a., = 6.3 MeV. In table 6.3-T2 we give theN .
69 67 63 62examples of the rates for four of the nuclei, -Cu, Ni, Co, and Co

for the ranges of temperature and density typical of the pre-SN burning
9

stage. The grid points for temperature and density used are T = 2 X 10 , 3 

•X 109, 4 x 109 , 6 X 109 and 6 x 109 °K and log1Q p1Q = -0.6, -1.0, -1.6,
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-2.6 and -3.0 respectively, p is the density in 1010 g/cc. The rates

given in table 6.3-T2 are for Y_ = 0.50. Changing Y_ gives rise to
........ .. © ©

different chemical potentials and this allows a finer gridding of the 

parameter p. The rates for all the nuclei show the general feature that the 

rates decrease with increasing density. This is easy to understand — 

increasing the density increases the chemical potential of electrons 

outside the nuclei impeding the decay process. The Fermi function, f is

very strongly dependent on the Q-value — actually for free decays one sees 

that in the absence of F(Z,E), it goes as the fifth power of the Q-value.

As the excitation energy in the daughter nucleus increases, the Q-value

decreases and so the Fermi function goes down. But on the other hand the GT 

strength rises because one goes higher up from the tail region. Thus there 

is a competition between two opposing effects. Through the continuous 

approximation of the level density of the daughter nucleus we take into 

account all these features in an averaged manner to give rise to realistic 

decay rates.

r*n

The decay rates as given by Aufderheide et a! for Co and Co with p = 

108 g/cc are 1.63 X 10-2 s"1, 1.14 X lo"1 s-1 for T = 3 X 109 °K and 1.69 X
—p —i —i —i On

10 s t and 2.56 X 10 s for T = 6X 10 K, The corresponding ground
_o —i —o — i

state decay rates from our calculation are 6.38 X 10 s , 3.15 X 10 s

for T = 3 X 109°K and 7.63 X 10-3 s_1 and 3.35 X 10~2 s_1 for T = 5 X 
9010 K. We see from table 6.3-T2 that the contributions from excited states

69can make the rates increase by a factor as high as 12.1 (as seen for Cu
9 0with log p = -0.5 and T = 6 X 10 K). These contributions increase with

higher densities as well as usually with higher temperatures (due to 
-E^kT

e factor) except for some cases of high p where the increase in the
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ground state rate relative to the excited states coming from the T

dependence in the f-factor more than cancels this increase. One should try

to include excited states in calculations wherever they are known
2)experimentally. The work of Aufderheide et at does not have this feature. 

In the shell model, extensive and time consuming calculations are needed to 

estimate how the rates get affected by excited states but in our 

statistical approach this is estimated quite easily.

The global width of the Gamow-Teller giant resonance is somewhat on the 

high side compared to the widths observed in (p,n) experiments which is 

about 4-6 MeV. But the nuclei we consider are the neutron rich ones in the

upper half of the fp shell. The closest cases studied experimentally are
64,56™ , 58,60-,. 17) _ ,, 9) „ , ,Fe and Ni .In the gross theory a Gaussian strength

distribution for the Gamow-Teller excitation gives a width of 6 MeV after

fitting the beta decay halflives globally over the whole periodic table.

But this method among other things differs from ours in the calculation of

the sum rule strength. Thus we feel that a careful evaluation of the

Gamow-Teller resonance width for neutron-rich nuclei with A > 60 both

theoretically and experimentally will be very useful for this problem.
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Table 6.3-T1

Comparisons of calculated and experimental halflives

Nucleus
Halflife t , (sec)

1/2

Experimental Calculated
Ours Gross theory QRPA

69nCu 180 261.4
68„Cu 31 22.0

66Cu 306 312.1

67Ni 21 47.0 94 23

66xt.Ni 9072 728.3
62 Co 90 16.1
63„Co 27.4 62.1
64 „Co 0.3 3.63 10.0
66nCo 1.26 6.66 8 8.69

61_Fe 360 34.6
62wFe 68 183.4
63„Fe 4.9 3.49 10 14.8
62,,Mn 0.88 1.06 2 0.773
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ô
H
X
oca
—H

ca
i
o
rH
Xrara
rH

ro ro
I I
o o
rH rH
X X 

oh oo 
oh oh

cr> oh 1.
04

x1
0 l 

(1
.0

3x
10

 2) ca ra 
i i
o o
rH rH
X X

rH ID 
rH O

rH rH 1.
19

x1
0 2 

(1
.0

9x
10

 2) r~N
ra ra

1 1
0 O
rH rH
X X
0 0
ro rH

rH rH

ro
1 O

rH
X

cn
!O
rH
X

rH
oo .

co
i
o
rH
XID
xr

ro
1
O
rH
X
rH

m
i
o
rH
Xo
00

co ro
i i
o o
rH rH
X X ro

ID ID

m ro
i i
© o
rH rH
X X 00 00 

ro

ro ro
1 I
o o
rH rH
X X ra ** 
ro O'*

ro ro
1 i
0 0
rH rH
X X ro 

in

ro ro^ 
i \
0 0
rH rH
X X 
^ O'*
r- 0

in r- =0 00 ID LD ID ID r-. 00 r* O'* 00
•w*

-3
1.

34
x1

0

ro
i
o
rH
Xo

ID
rH

co
i
o
rH
XID

CO

Ca

co
I
o
i-H
Xo
o

ro

ro
i
o
rH
Xo

r->

ro

r>»
co co

i !
o o
rH rH
X X o o

rH rH

ro ro
1 1
O O 
rH rH
X X 
00 ro
ID ID
rH rH

ro ro1 1
o o
rH rH
X X in ro 
m ro
ra ra

ro ro
1 !
O O
rH rH
X X ID O rr
ro ra

ro ro
1 t
O O
rH rH
X X 

oh ra 
in in
*31 ro

-6
8.

61
x1

0

m
i
o
rH
Xo
00
CO

TT
1
O
X

rH
o
rH

1
o
rH
X
rH

M

1
o
rH
X00

00
XT ■

in m
1 1
o o
rH rH
X X CO 00 
co ra
rH rH

in in 
i i
o o
rH rH
X X in ro 
m id

in ««j*

<31 <31
1 1
0 0
rH rH
X X r- ra
m rH

rH rH 
w

<31 <31
1 1
O 0
rH rH
X X 

id ra ro 00

"*f< ra 8.
26

x1
0 4 

(4
.9

1x
10

 4)

-1
0

1.
37

x1
0

00
1
o
rH
Xcn

ca

r*~
i
o
rH
Xro

CNJ

VO
{
O
rH
Xca
ID
ra

ID
[
O
rH
X

•
ro
0s.

0 cT
rH rH

1 i
O O 
rH rH
X X 

ID ^ 
ID rH

tji ra

OO oo
I 1
o o
rH rH
X X O ro
rH rH

l> ro

ID C-“
\ \
O O 
rH rH
X X ro O 
rH 00
rH ^

ID ID
1 i
O O 
rH rH
X X ro O 
r- 00

id ra

in id 
i 1
0 0
rH rH
X XID ^ 
ro vo
ra oh

9
2x

10

oh
o
rH
Xco

OH
O
rH
X

©
rH
Xin

CT*
©
rH
X

lO

oh
o
rH
Xra

oh
o
rH
Xro

O'*
O
rH
X

OH
0
rH
Xin

OH
O
rH
X

ID

fH
55

c-
ID

0
0

CO
ID



03 c\o
rH
X
rr
rr

H1 (4
.4

0x
10

 n 03 C1
O
rH
Xo
m

(4
.4

2x
10

 *) 03 C
1o
rH
X
in

h1 (4
.4

0x
10

 n 03 C
I
O
rH
X10
m

H1

*3
lo
rH
Xas

<H

H<
w*

03 C1O
rH
X10
in

*r

*31
O
rH
X10

fH

Hi

eo c
Io
t—(
X
m
O

•3
lo
rH
X00cn

03 c
io
rH
X
rH
rH

*3
1
O
rH
X03
O

03 c 
Io
rH
Xo03

"3
1O
rH
X

0**o

03 C
'o

rH
X0003

•3^
1
O
rH
X
rH
rH

03 c
io
rH
X

fH
<H

•3
1 O
rH
X

rH
fH

h* rH H* y-m*' 3 H1

03
i
o
rH
XH*o

1o
tH
Xoo

051o
rH
X f5 03

s1
o
rH
Xm

rH

03IO
rH
XID

ph

•ZTi
o
rH
Xm03

03 <io
rH
Xoin

*3^
1O
rH
Xm
fH

03
i
O
rH
X

fH10

fO
rH
XinH*

ph rn PH rr) rn PH PH (H <H (H

03 C 1
OfH
Xo<sO

N1
O
rH
Xr-in

03 C 1
O
rH
X10
10

N]
1o
rH
X
rH<o

03 (
O
rH
X
rHa\

*3
1o
rH
X03
00

03 <

o
rH
X

00
O

N
l
O
rH
X

10
cn

03 C 1o
rH
X
m
03

N
1
O
rH
X03

rH

rH rH rH rH rH rH 03 rH 03 03

ph < 
1
O
rH
X
c-

i 00

H
I
O
rH
X

r-*
r-

ph « 
Io
rH
X
10
rH

H
1o
rH
X
10
rH

fH <

O
rH
X

COas

H
1
o
rH
X
0-
10

fH <

. o
rH
X

10in

H
io
rH
X

CTS
o

fH f 
1
o
rH
X

CO

H
1o
rH
X

PH
03

03 03 fH fH cn ph
w

in lo 10 10
'w<'

\x>
io
rH
X

ID
rH

0
1
O
rH
X

rHin

in i
o
rH
X00
as

n1
o
rH
XOsin

in i
o
rH
X00

n«S
n

io
rH
X

rH
PH

H*
o
rH
X

CHin

cr
io
rH
X
r*03

©
rH
X
cn

CP
1O
rH
Xas

H*

ph 03 rH rH 10 m tH rH
"w*

03 03

as
o
fHX

O'O
rH
X

fH

CTi
O
rH
X

as
o
rH
Xin

cn
©
rH
X

10

o
CJ0310

10
0



REFERENCES FOR CHAPTER VI

1) . Bethe H A, Rev. Mod. Phys. 62 (1990) 801

2) . Aufderheide M B, Brown G E, Kuo T T S, Stout D B and Vogel P,

Astrophys. J. 362 (1990) 241

3) . Kar K, Sarkar S and Ray A, Phys. Lett. B261 (1991) 217

4) . Fuller G M, Fowler W A and Newman M J, Astrophys. J. 293 (1986) 1 ;

262 (1982) 716

6). Bloom S D and Fuller G M, Nucl. Phys. A440 (1986)

6) . Wlldenthal B H, Curtin M S and Brown B A, Phys. Rev. C28 (1983) 1343

7) . Klapdor H V. Metzinger J and Oda T, At. Data Nucl. Data Tables

31 (1984) 81 ; 44 (1990) 73

8) . Moller P and Randrup J, Nucl. Phys. A614 (1990) 1

9) . Takahashi K and Yamada M. Prog. Theo. Phys. 41 (1969) 1470 ;

Takahashi K, Yamada M and Kondoh T, At. Data Nucl, Data Tables 

12 (1973) 101

10) . Draayer J P. French J B and Wong S S M, Ann. Phys.(NY) 106 (1977) 472

11) . Morita M, Beta Decay and Muon Capture

(Benjamin, New York, 1973) p 216, p216

12) . French J B, Kota V K B, Pandey A and Tomsovic S, Laboratory Report

UR-1027 (University of Rochester, 1987); Phys. Rev. Lett.

68 (1987) 2400; Ann. Phys.(NY) 181 (1988) 235

13) . Nakayama K, Pio Galeao A and Krmpotic F, Phys. Lett. B114 (1982) 217

14) . Schenter G K and Vogel P, Nucl. Sci. Eng. 83 (1983) 393

101



16), Lederer C M and Shirley V S, (eds), Tables of isotopes,

7th ed. (Wiley, New York, 1978);

Shirley V S, (ed), Tables of radioactive isotopes (Wiley, New York, 1986)

16) . Cooperstein J, 1989 in Supernoyae and Stellar evolution, edited by

Ray A and Velusamy T (Proc. of the shcool and workshop, Goa, India)

17) . Osterfeld F, Cha D and Speth J, Phys. Rev. C31 (1986) 372

18) . Rapaport T, Taddeucci T, Welch T P, Gaarde C, Larsen J, Horen D J,

Sugarbaker E, Koncz P, Foster C G, Goodman C D, Goulding C A,

and Masterson T, Nucl. Phys. A460 (1983) 371

102


