TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xii</td>
<td>x</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xiv</td>
<td>xiv</td>
</tr>
</tbody>
</table>

1 INTRODUCTION 1

1.1 GENERAL 1

1.2 OBJECTIVES OF THE RESEARCH 7

1.3 LITERATURE REVIEW 7

1.3.1 Voltage Stability 7

1.3.2 Loss Minimization 12

1.3.3 Reconfiguration 14

1.3.4 Load Shedding 15

1.3.5 FACTS Devices 17

1.4 THESIS SKETCH 27

1.5 SUMMARY 28

2 VOLTAGE STABILITY 29

2.1 GENERAL 29

2.2 VOLTAGE STABILITY PHENOMENON 29

2.3 VOLTAGE STABILITY ANALYSIS 33

2.3.1 Singular Value Decomposition 33

2.3.2 Eigen-Value Decomposition 34

2.3.3 Reduced Jacobian Determinant 35
2.3.4 Minimum Singular Value Method 36
2.3.5 RVI Indicator 38
2.3.6 Linear Static VSI 39
2.3.7 Radial VSI 40
2.4 PREVENTIVE MEASURES 41
2.4.1 On Load Tap Changer 42
2.4.2 Reactive Power Compensation 42
2.4.3 Load Shedding 43
2.5 SUMMARY 44

3 FLEXIBLE AC TRANSMISSION SYSTEMS 45
3.1 GENERAL 45
3.2 STATIC VAR COMPENSATOR 49
3.2.1 Shunt Variable Susceptance Model 51
3.2.2 Firing Angle Model of SVC 52
3.3 THYRISTOR CONTROLLED SERIES COMPENSATOR 53
3.3.1 Variable Series Impedance Power Flow Model 53
3.3.2 Static modelling of TCSC 54
3.4 STATCOM 55
3.5 STATIC SYNCHRONOUS SERIES COMPENSATOR 57
3.6 UNIFIED POWER FLOW CONTROLLER 59
3.7 INTERLINE POWER FLOW CONTROLLER 63
3.8 POSSIBLE BENEFITS 65
3.9 SUMMARY 66
<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>ELEGANT FACTS PLACEMENT STRATEGIES</td>
<td>67</td>
</tr>
<tr>
<td>4.1</td>
<td>GENERAL</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>PROPOSED METHOD</td>
<td>69</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Mathematical Modelling</td>
<td>69</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Problem Formulation</td>
<td>71</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Representation of BBO Variables</td>
<td>75</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Repair Algorithm</td>
<td>75</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Fitness Function</td>
<td>76</td>
</tr>
<tr>
<td>4.2.6</td>
<td>Stopping Criterion</td>
<td>79</td>
</tr>
<tr>
<td>4.2.7</td>
<td>Solution Process</td>
<td>79</td>
</tr>
<tr>
<td>4.3</td>
<td>SUMMARY</td>
<td>81</td>
</tr>
<tr>
<td>5</td>
<td>SIMULATION RESULTS AND DISCUSSIONS</td>
<td>82</td>
</tr>
<tr>
<td>5.1</td>
<td>GENERAL</td>
<td>82</td>
</tr>
<tr>
<td>5.2</td>
<td>SIMULATION RESULTS</td>
<td>83</td>
</tr>
<tr>
<td>5.3</td>
<td>SUMMARY</td>
<td>114</td>
</tr>
<tr>
<td>6</td>
<td>CONCLUSIONS</td>
<td>115</td>
</tr>
<tr>
<td>6.1</td>
<td>CONTRIBUTIONS OF THE THESIS</td>
<td>115</td>
</tr>
<tr>
<td>6.2</td>
<td>LIMITATIONS OF THE THESIS</td>
<td>117</td>
</tr>
<tr>
<td>6.3</td>
<td>SCOPE FOR FUTURE RESEARCH</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>APPENDIX I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BIOGEOGRAPHY-BASED OPTIMIZATION</td>
<td></td>
</tr>
<tr>
<td>A1.1</td>
<td>GENERAL</td>
<td>118</td>
</tr>
<tr>
<td>A1.2</td>
<td>BIOGEOGRAPHY</td>
<td>118</td>
</tr>
<tr>
<td>A1.3</td>
<td>BBO</td>
<td>120</td>
</tr>
<tr>
<td>A1.3.1</td>
<td>Migration</td>
<td>122</td>
</tr>
</tbody>
</table>
CHAPTER NO. TITLE PAGE NO.

A1.3.2 Mutation 123
A1.3.3 Algorithm 124
A1.4 COMPARISON WITH OTHER EVOLUTIONARY ALGORITHMS 125
A1.5 SUMMARY 126

APPENDIX 2 PARTICLE SWARM OPTIMIZATION 127
A2.1 GENERAL 127
 Iterative steps 130

APPENDIX 3 GENETIC ALGORITHM 134
A3.1 GENERAL 134
 Genetic Representation of Solutions 135
 Initialisation 136
 Fitness Function 136
 Genetic Operators 137
 Stopping Criteria 139
 GA Parameters 139
 Genetic Iteration 140

APPENDIX 4 BUS DETAILS 142

REFERENCES 156

LIST OF PUBLICATIONS 168

CURRICULUM VITAE 169
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1</td>
<td>Network Loss with number of FACTS devices</td>
<td>84</td>
</tr>
<tr>
<td>5.2</td>
<td>Optimal solution of case-1 for IEEE 14 bus system</td>
<td>85</td>
</tr>
<tr>
<td>5.3</td>
<td>Optimal solution of case-1 for IEEE 30 bus system</td>
<td>86</td>
</tr>
<tr>
<td>5.4</td>
<td>Optimal solution of case-1 for IEEE 57 bus system</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of results for case-1 before and after FACTS placement</td>
<td>88</td>
</tr>
<tr>
<td>5.6</td>
<td>Optimal Solution of case-2 for IEEE 14 bus system</td>
<td>90</td>
</tr>
<tr>
<td>5.7</td>
<td>Optimal Solution of case-2 for IEEE 30 bus system</td>
<td>91</td>
</tr>
<tr>
<td>5.8</td>
<td>Optimal Solution of case-2 for IEEE 57 bus system</td>
<td>92</td>
</tr>
<tr>
<td>5.9</td>
<td>Comparison of results for case-2 before and after FACTS placement</td>
<td>93</td>
</tr>
<tr>
<td>5.10</td>
<td>Optimal Solution of case-3 for IEEE 14 bus system</td>
<td>95</td>
</tr>
<tr>
<td>5.11</td>
<td>Optimal Solution of case-3 for IEEE 30 bus system</td>
<td>96</td>
</tr>
<tr>
<td>5.12</td>
<td>Optimal Solution of case-3 for IEEE 57 bus system</td>
<td>97</td>
</tr>
<tr>
<td>5.13</td>
<td>Comparison of results for case-3 before and after FACTS placement</td>
<td>98</td>
</tr>
<tr>
<td>TABLE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>5.14</td>
<td>Optimal Solution of case-4 for IEEE 14 bus system</td>
<td>100</td>
</tr>
<tr>
<td>5.15</td>
<td>Optimal Solution of case-4 for IEEE 30 bus system</td>
<td>101</td>
</tr>
<tr>
<td>5.16</td>
<td>Optimal Solution of case-4 for IEEE 57 bus system</td>
<td>102</td>
</tr>
<tr>
<td>5.17</td>
<td>Comparison of results for case-4 before and after FACT placement</td>
<td>103</td>
</tr>
<tr>
<td>A4.1</td>
<td>Bus data of the IEEE 14 bus system</td>
<td>142</td>
</tr>
<tr>
<td>A4.2</td>
<td>Line data of the IEEE 14 bus system</td>
<td>143</td>
</tr>
<tr>
<td>A4.3</td>
<td>Bus data of the IEEE 30 bus system</td>
<td>145</td>
</tr>
<tr>
<td>A4.4</td>
<td>Line data of the IEEE 30 bus system</td>
<td>146</td>
</tr>
<tr>
<td>A4.5</td>
<td>Bus data of the IEEE 57 bus system</td>
<td>149</td>
</tr>
<tr>
<td>A4.6</td>
<td>Line data of the IEEE 57 bus system</td>
<td>151</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Sample two bus power system</td>
<td>30</td>
</tr>
<tr>
<td>2.2</td>
<td>Voltage-Power characteristics for different power factors</td>
<td>31</td>
</tr>
<tr>
<td>2.3</td>
<td>Sample QV Curve</td>
<td>32</td>
</tr>
<tr>
<td>2.4</td>
<td>Sample Distribution Line</td>
<td>39</td>
</tr>
<tr>
<td>3.1</td>
<td>Basic Type of FACTS devices</td>
<td>48</td>
</tr>
<tr>
<td>3.2</td>
<td>Static VAR Compensator</td>
<td>49</td>
</tr>
<tr>
<td>3.3</td>
<td>V-I Characteristics of SVC</td>
<td>50</td>
</tr>
<tr>
<td>3.4</td>
<td>V-Q Characteristics of SVC</td>
<td>50</td>
</tr>
<tr>
<td>3.5</td>
<td>Susceptance model of SVC</td>
<td>51</td>
</tr>
<tr>
<td>3.6</td>
<td>Firing angle model of SVC</td>
<td>52</td>
</tr>
<tr>
<td>3.7</td>
<td>Thyristor Controlled Series Compensator</td>
<td>53</td>
</tr>
<tr>
<td>3.8</td>
<td>Thyristor controlled series compensator equivalent circuit</td>
<td>54</td>
</tr>
<tr>
<td>3.9</td>
<td>Static modelling of TCSC</td>
<td>54</td>
</tr>
<tr>
<td>3.10</td>
<td>Injection modelling of TCSC</td>
<td>54</td>
</tr>
<tr>
<td>3.11</td>
<td>Static Synchronous Compensator</td>
<td>56</td>
</tr>
<tr>
<td>3.12</td>
<td>Static Synchronous Compensator Equivalent circuit</td>
<td>56</td>
</tr>
<tr>
<td>3.13</td>
<td>Static Synchronous Series Compensator</td>
<td>58</td>
</tr>
<tr>
<td>3.14</td>
<td>Equivalent circuit of SSSC</td>
<td>59</td>
</tr>
<tr>
<td>3.15</td>
<td>Unified Power Flow Controller</td>
<td>60</td>
</tr>
<tr>
<td>3.16</td>
<td>Equivalent circuit of Unified Power Flow Controller</td>
<td>61</td>
</tr>
<tr>
<td>FIGURE NO.</td>
<td>TITLE</td>
<td>PAGE NO.</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>3.17</td>
<td>Simultaneous control of voltage, impedance & angle</td>
<td>62</td>
</tr>
<tr>
<td>3.18</td>
<td>Inter Line Power Flow Controller</td>
<td>64</td>
</tr>
<tr>
<td>3.19</td>
<td>Equivalent circuit of IPFC</td>
<td>64</td>
</tr>
<tr>
<td>4.1</td>
<td>Representation of decision variables</td>
<td>75</td>
</tr>
<tr>
<td>4.2</td>
<td>Flow chart of the proposed strategy</td>
<td>80</td>
</tr>
<tr>
<td>5.1</td>
<td>Comparison of network loss for IEEE 14 bus system</td>
<td>105</td>
</tr>
<tr>
<td>5.2</td>
<td>Comparison of network loss for IEEE 30 bus system</td>
<td>106</td>
</tr>
<tr>
<td>5.3</td>
<td>Comparison of network loss for IEEE 57 bus system</td>
<td>107</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison of voltage magnitudes for IEEE 14 bus system</td>
<td>108</td>
</tr>
<tr>
<td>5.5</td>
<td>Comparison of voltage magnitudes for IEEE 30 bus system</td>
<td>109</td>
</tr>
<tr>
<td>5.6</td>
<td>Comparison of voltage magnitudes for IEEE 57 bus system</td>
<td>110</td>
</tr>
<tr>
<td>5.7</td>
<td>Comparison of VSI for IEEE 14 bus system</td>
<td>111</td>
</tr>
<tr>
<td>5.8</td>
<td>Comparison of VSI for IEEE 30 bus system</td>
<td>112</td>
</tr>
<tr>
<td>5.9</td>
<td>Comparison of VSI for IEEE 57 bus system</td>
<td>113</td>
</tr>
<tr>
<td>A1.1</td>
<td>Species model of single habitat</td>
<td>120</td>
</tr>
<tr>
<td>A3.1</td>
<td>Representation of decision variables</td>
<td>135</td>
</tr>
<tr>
<td>A3.2</td>
<td>Crossover operation</td>
<td>138</td>
</tr>
<tr>
<td>A3.3</td>
<td>Mutation operation</td>
<td>139</td>
</tr>
<tr>
<td>A4.1</td>
<td>Single line diagram of IEEE 14 bus system</td>
<td>144</td>
</tr>
<tr>
<td>A4.2</td>
<td>Single line diagram of IEEE 30 bus system</td>
<td>148</td>
</tr>
<tr>
<td>A4.3</td>
<td>One line diagram of IEEE 57 bus system</td>
<td>155</td>
</tr>
</tbody>
</table>
LIST OF SYMBOLS AND ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_{ij} and Q_{ij}</td>
<td>Active and reactive power flow from bus-i to j respectively</td>
</tr>
<tr>
<td>Ψ</td>
<td>Augmented objective function</td>
</tr>
<tr>
<td>BBO</td>
<td>Biogeography based optimization</td>
</tr>
<tr>
<td>x_{ij}'</td>
<td>Buses-i and j along with FACTS device</td>
</tr>
<tr>
<td>CP</td>
<td>Capacitor placement</td>
</tr>
<tr>
<td>$\Delta \alpha_{SVC}$</td>
<td>Change in firing angle of SVC</td>
</tr>
<tr>
<td>ΔG_{ij}</td>
<td>Change in line conductance between bus i and j</td>
</tr>
<tr>
<td>ΔB_{ij}</td>
<td>Change in line susceptance between bus i and j</td>
</tr>
<tr>
<td>ΔQ_i</td>
<td>Change in reactive power injection at bus-i by a FACTS device</td>
</tr>
<tr>
<td>g_k</td>
<td>Conductance of the transmission line-k</td>
</tr>
<tr>
<td>ψ</td>
<td>Constant</td>
</tr>
<tr>
<td>F_{ij}</td>
<td>Elements of hybrid –F matrix</td>
</tr>
<tr>
<td>$g(x,u)$</td>
<td>Equality constraints</td>
</tr>
<tr>
<td>FACTS</td>
<td>Flexible AC transmission systems</td>
</tr>
<tr>
<td>GA</td>
<td>Genetic algorithm</td>
</tr>
<tr>
<td>p^{mod}</td>
<td>Habitat modification probability</td>
</tr>
<tr>
<td>HSI</td>
<td>Habitat suitability index</td>
</tr>
<tr>
<td>λ and μ</td>
<td>Immigration and emigration rates respectively</td>
</tr>
<tr>
<td>ISO</td>
<td>Independent system operator</td>
</tr>
<tr>
<td>$h(x,u)$</td>
<td>Inequality constraints</td>
</tr>
<tr>
<td>S_{ic}</td>
<td>Injection of apparent power at i-th bus</td>
</tr>
<tr>
<td>S_{jc}</td>
<td>Injection of apparent power at j-th bus</td>
</tr>
</tbody>
</table>
IPFC - Inter line power flow controller
X & Y - Left & right eigenvector
V & W - Left & right singular vector
x_c - Line Capacitance
η_k - Line compensation factor in the range of (-0.8, 0.2) for k^{th} FACTS device
L_i - Line indicator
x_k - Line Inductance
LP - Linear programming
LS - Load shedding
Q_{Gi}^{\min} and Q_{Gi}^{\max} - Lower and upper limit reactive power generation at bus-i respectively
V_i^{\min} and V_i^{\max} - Lower and upper limits of voltage magnitude at bus-i respectively
E_{\max} - Maximum emigration rate
I_{\max} - Maximum immigration rate
m_{\max} - Maximum mutation rate
Iter$^{\max}$ - Maximum number of iterations
P_{\max} - Maximum probability
S_{\max} - Maximum species in the habitat
Q_l - Mega var injection
MVAR - Mega volt ampere reactive
$m(s)$ - Mutation rate for habitat possessing S species
L_k - Number of a line, where k^{th} FACTS device is to be located
neh - Number of elite habitats
nf - Number of FACTS devices
\(nh \) - Number of habitats

\(n_{load} \) - Number of load buses

\(\Phi(x,u) \) - Objective function

PSO - Particle swarm optimization

\(V_{sh} \) - Positive sequence shunt voltage

\(P^S(t) \) - Probability that the habitat contains exactly \(S \) species at time \(t \)

PM - Proposed method

\(X_{SVC} \) - Reactance of SVC

\(x_F \) - Reactance of the FACTS device

\(x_{ij} \) - Reactance of the transmission line between buses- \(i \) and \(j \)

\(Q_k \) - Reactive power at \(k \)-th bus

\(Q_{sh} \) - Reactive power at shunt connected source

\(Q_{ji} \) - Reactive power flow from \(j \)-th bus to \(i \)-th bus

\(Q_{Gi} \) - Reactive power generation at bus- \(i \)

\(Q_{Fi} \) - Reactive power supplied by the FACTS device at bus- \(i \)

\(Q_F^k \) - Reactive power support by \(k \)-th FACTS device in MVAR

\(Q_v \) - Reactive power voltage

\(P_{sh} \) - Real power flow at shunt voltage source

\(P_{ji} \) - Real power flow from \(j \)-th bus to \(i \) bus

\(P_v \) - Real power voltage

\(V_{se} \) - Series connected voltage source

\(\theta_{se} \) - Series converter angle in IPFC

\(V_{se} \) - Series converter voltage of IPFC
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{se}</td>
<td>Series source impedance</td>
</tr>
<tr>
<td>αG</td>
<td>Set of generator buses</td>
</tr>
<tr>
<td>αL</td>
<td>Set of load buses</td>
</tr>
<tr>
<td>$P(V, \delta)$</td>
<td>Set of real power expressions at PV and PQ buses</td>
</tr>
<tr>
<td>$Q(V, \delta)$</td>
<td>Set of reactive power expressions at PQ buses</td>
</tr>
<tr>
<td>Q^{sp}</td>
<td>Set of specified reactive powers at PQ buses</td>
</tr>
<tr>
<td>P^{sp}</td>
<td>Set of specified real powers at PV and PQ buses</td>
</tr>
<tr>
<td>G_{sh}</td>
<td>Shunt converter conductance</td>
</tr>
<tr>
<td>B_{sh}</td>
<td>Shunt converter susceptance</td>
</tr>
<tr>
<td>Q_{sh}</td>
<td>Shunt converter reactive power</td>
</tr>
<tr>
<td>P_{sh}</td>
<td>Shunt converter real power</td>
</tr>
<tr>
<td>Z_{sh}</td>
<td>Shunt source impedance</td>
</tr>
<tr>
<td>SA</td>
<td>Simulated annealing</td>
</tr>
<tr>
<td>P_s</td>
<td>Species count probability</td>
</tr>
<tr>
<td>S</td>
<td>Species in the habitat</td>
</tr>
<tr>
<td>V_0</td>
<td>Starting voltage at a bus</td>
</tr>
<tr>
<td>$-jX_c$</td>
<td>Static reactance</td>
</tr>
<tr>
<td>$-jX_c$</td>
<td>Static reactance</td>
</tr>
<tr>
<td>STATCOM</td>
<td>Static synchronous compensator</td>
</tr>
<tr>
<td>SSSC</td>
<td>Static synchronous series compensator</td>
</tr>
<tr>
<td>SVC</td>
<td>Static VAR compensator</td>
</tr>
<tr>
<td>Y_{ll} & G_{lg}</td>
<td>Sub matrices of the Y- bus matrix</td>
</tr>
<tr>
<td>SIV</td>
<td>Suitability index variable</td>
</tr>
<tr>
<td>SVSI</td>
<td>Sum of voltage stability index</td>
</tr>
<tr>
<td>B_{SVC}</td>
<td>Susceptance of SVC</td>
</tr>
<tr>
<td>α_{SVC}^i</td>
<td>SVC firing angle at i^{th} iteration</td>
</tr>
<tr>
<td>Q_{SVC}</td>
<td>SVC reactive power</td>
</tr>
</tbody>
</table>
B_{svc} - SVC susceptance

B_{svc}^i - SVC susceptance at i^{th} iteration

P_L - System real power loss

Subscript i - Terminal buses of line-m

and j

TCPAR - Thyristor controlled phase angle regulator

TCSC - Thyristor controlled series compensator

n - Total number of species in the habitat

T_k - Type of k^{th} FACTS device

UPFC - Unified power flow controller

α_{svc} - Variable firing angle of SVC

u - Vector of control or independent variables

x - Vector of dependent variables

δ_{ij} - Voltage angle between buses-i and j

V_{di} - Voltage deviation at bus-i

V_i - Voltage flow at i-th bus

V_i and V_j - Voltage magnitude at buses-i and j respectively

VP - Voltage profile

VR - Voltage regulators

VS - Voltage stability

RVI - Voltage stability index

w_1 and w_2 - Weight constants