TABLE OF CONTENTS

Acknowledgments i
Abstract iii
List of Publications xi
List of Tables xii
List of Figures xv
Nomenclature xxiii

1 Introduction

1.1. Common background 2
1.2. Origin of the problem 4
1.3. Objectives of the present research work 5
1.4. Thesis organization 5

2 Literature Review

2.1. Recombinant protein production 8
2.2. Biopharmaceutical products 9
2.3. Recombinant protein production in *S. cerevisiae* 11
 2.3.1. *S. cerevisiae* as a core facility protein expression host 14
 2.3.2. Role of *S. cerevisiae* in biotechnology 15
 2.3.3. Expression systems 16
 2.3.4. Expression systems for *S. cerevisiae* 20
2.4. Cell growth and fermentation conditions 21
 2.4.1. Batch fermentations 21
 2.4.2. Fed batch fermentations 22
 2.4.3. Induction strategy 23
2.5. Significant parameters affecting fermentation process 25
 2.5.1. Physical parameters affecting fermentation process 25
 2.5.2. Optimization and development of production media 26
2.6. Downstream processing strategies for recombinant therapeutic proteins 28
2.6.1. Filtration systems and operations 29
2.6.2. Fast protein liquid chromatography (FPLC) 30

2.7. Chromatographic purification strategies for recombinant therapeutic proteins 31
2.7.1. Classical purification methods 31
2.7.2. Ion exchange chromatography 32
2.7.3. Gel filtration or size exclusion chromatography 32
2.7.4. Effect of physico-chemical parameters on protein purification 33

2.8. Characterization strategies of recombinant proteins 33
2.8.1. Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis 34
2.8.2. SDS-PAGE and Two dimensional (2D) electrophoresis 34
2.8.3. Western blotting 35
2.8.4. Secondary structure analysis of recombinant proteins 35
2.8.5. Liquid chromatography and Mass spectrometry (LCMS) analysis of recombinant proteins 36

2.9. Hemostasis and Regulation of blood coagulation 36
2.9.1. Hemostasis 36
 2.9.1.1. Coagulation Factors 38
2.9.2. Regulation of Hemostasis 43
 2.9.2.1. Coagulation Inhibitors 44
2.9.3. New concept of coagulation 45
2.9.4. Fibrinolysis 45
2.9.5. Thrombin 46
 2.9.5.1. Thrombin Inhibition 48

2.10. Antithrombin III 50
 2.10.1. Therapeutic significance of rhAT III 51
 2.10.2. Role of AT III in cardiovascular disease 53

3 Materials and methods 54
3.1. Cloning and expression of rhAT III protein 55
 3.1.1. Strains and vectors 55
 3.1.2. Plasmid and cloning 56
3.1.3. Primer sequences 56
3.1.4. Preparation of chemically competent *E. coli* cells 56
3.1.5. Preparation of electrocompetent *E. coli* cells 57
3.1.6. Transformation of clone into chemical competent
E. coli cells 57
3.1.7. Transformation of clone into electrocompetent *E. coli* cells 57
3.1.8. Plasmid preparation 58
3.1.9. Digestion of DNA with restriction enzymes 58
3.1.10. DNA gel electrophoresis 59
3.1.11. Preparation of *S. cerevisiae* competent cells 59
3.1.12. Transformation of clone (pYES2/CT with AT III gene) into
S. cerevisiae BY4741 by electroporation method 60
3.1.13. *S. cerevisiae* BY4741 culturing 61
3.1.14. Protein Purification 61
3.1.15. Analysis of rhAT III protein 62
 3.1.15.1. SDS-PAGE analysis 62
 3.1.15.2. Two dimensional (2D) electrophoresis 63
 3.1.15.3. Western blot analysis 63
 3.1.15.4. Hemagglutination inhibition assay of rhAT III 63
3.2. Chemicals, reagents and other consumables 64
3.3. Antibiotics and inducer 65
3.4. Growth media composition 65
3.5. Instrumentation 67
3.6. Protein purification columns, resins and filtration equipment 68
3.7. Reagents and buffers 68
3.8. Optimization of media for the production of rhAT III 73
 3.8.1. Selection of primary nutrients using OFAT method 74
 3.8.2. Screening of major influential factors for the rhAT III
 production by Placket-Burman design 74
 3.8.3. The effect of major influential factors for rhAT III production
 through central composite design 75
3.9. Batch fermentation for the production of rhAT III 77
3.10. Fed-batch fermentation for the production of rhAT III 78
3.11. Optical density and dry cell weight 79
3.12. Cell disruption 79
3.13. Protein concentration estimation and analysis 80
3.14. Concentration and partial purification of protein solution by cross flow filtration system (CFF) 80
 3.14.1. Filtration efficiency of rhAT III solution at different temperature and transmembrane pressures 80
 3.14.2. Concentration of protein solution 80
3.15. Purification of rhAT III by chromatography techniques 81
 3.15.1. Purification of rhAT III through SEC followed by IEC 81
 3.15.2. Optimization of purification strategies 81
3.16. Characterization of rhAT III 82
 3.16.1. RP-HPLC analysis 82
 3.16.2. Secondary structure analysis of rhAT III 82
 3.16.3. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) 83
 3.16.4. Western blotting 84
 3.16.5. Liquid chromatography mass spectrometry (LC-MS) analysis 84
 3.16.6. Biological activity of rhAT III 85

4 Cloning and Expression studies of rhAT III in S. cerevisiae BY4741 86
 Abstract 87
4.1. Introduction 87
4.2. Materials and methods 88
4.3. Results and discussion 90
 4.3.1. Transformation analysis of bacterial strains 90
 4.3.2. Plasmid and cloning analysis 92
 4.3.3. Amplification of AT III cDNA target 93
 4.3.4. Digestion analysis of pYES2/CT gene construct 93
 4.3.5. Purification analysis of rhAT III protein 94
 4.3.6. Two dimensional (2D) gel electrophoresis analysis 95
 4.3.7. Western blot analysis of rhAT III 96
 4.3.8. Hemagglutination inhibition assay of rhAT III 97
4.4. Conclusions 98
5 Identification and optimization of media constituents for rhAT III production with design of experiments

Abstract

5.1. Introduction

5.2. Materials and methods

5.3. Results and discussion

5.3.1. Effect of primary medium components on dry cell weight

5.3.2. PB design analysis for selection of significant nutritional supplements for rhAT III Production

5.3.3. Estimation of the optimal Concentrations and Interactive effects of the important factors on rhAT III production using CCD

5.3.4. Experimental validation

5.4. Conclusions

6 Production strategies and Characterization of rhAT III from S. cerevisiae

Abstract

6.1. Introduction

6.2. Materials and methods

6.3. Results and discussion

6.3.1. Production of rhAT III

6.3.2. Cell lysis analysis

6.3.3. Concentration and partial purification through cross flow filtration

6.3.4. Chromatographic purification of rhAT III

6.3.5. Characterization analysis of rhAT III

6.3.5.1. RP-HPLC analysis of rhAT III

6.3.5.2. Secondary structural analysis of rhAT III through CD and FT-IR spectroscopy

6.3.5.3. Molecular mass analysis of rhAT III through SDS-PAGE, Western blotting and LC-MS

6.3.6. Biological potency of rhAT III
Improvement of purification strategies to achieve high recovery yield, purity and biological potency of rhAT III protein for their possible therapeutic potential

Abstract

7.1. Introduction

7.2. Materials and methods

7.3. Results and discussion

7.3.1. Preparation of concentrated solution and fractional purification of rhAT III

7.3.2. The effect of physico-chemical parameters on rhAT III purification

7.3.2.1. The effect of chromatographic resin on rhAT III purification

7.3.2.2. The effect of mobile phase on rhAT III purification

7.3.2.3. The effect of mobile phase pH on rhAT III purification

7.3.2.4. The effect of flow rate on rhAT III purification

7.3.2.5. The effect of sample volume on rhAT III purification

7.3.2.5. The effect of protein concentration on rhAT III purification

7.3.4. Optimal conditions for rhAT III purification

7.3.5. Characterization analysis

7.3.5.1. SDS-PAGE, western blot and biological activity of rhAT III

7.4. Conclusions

8 Conclusions and Future perspectives

8.1. Introduction

8.2. Summary and conclusions

8.3. Future scope of the work

References