
 
 

 

 

 

 

 

 

 

 

 

Chapter – III* 

Effect of Surface Roughness on Squeeze 
Film Characteristics between Parallel 

Stepped Plates with Rabinowitsch Fluid 
 

 

 

 

 

 

 

 

 

 

*Part of this Chapter has been published in the journal “International Journal of 
Mathematical Archive”, Vol.7 (6), 2016, pp.38-48 
 



46 
 

3.1    Introduction  
 
 The study of bearings with an assumption of smooth bearing surfaces will not 

predict the bearing performance accurately. Stresses generated when rough surfaces come 

in to contact and play an important role in most mechanism of friction and wear. Because 

of this, in recent years, the study of surface roughness has been studies with greater 

importance in the study of bearings, since the surface roughness is inherent to the process 

used in their manufacture. Height of the surface roughness may range from 0.05μm of 

less on polished surfaces to 10μm medium machined surfaces.  Due to the random 

character of the surface roughness, a stochastic approach has been employed to 

mathematically model the surface roughness by several investigators.  Christensen (1969-

70) developed a stochastic model for the study of surface roughness on hydrodynamic 

lubrication of bearings. The stochastic concept of transverse and longitudinal roughness 

on the steady state behaviour of journal bearings is analyzed by Christensen and Tonder 

(1971, 1973). Hsu et.al (2009) studied the effects of surface roughness and rotating 

inertia on the squeeze film characteristics of parallel circular disks. 

 With the development of modern machine equipments the increasing use of non-

Newtonian fluids as lubricants are becoming of great interest. According to recent 

experimental investigations (1988, 1995), base oil blended with long chained additives is 

found to improve lubricating properties and reduce friction and surface damage. Several 

micro continuum   theories have been proposed to describe the rheological behaviours of 

such non-Newtonian lubrication in a better way. Recently, Naduvinamani et.al (2007) 

analyzed the combined effects of surface roughness and couple stresses on squeeze film 

lubrication between porous circular stepped plates.  This theory has been widely used to 
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investigate the effects of couple stresses on the performance of different type of fluid film 

bearings such as slider bearings (1979, 2005), journal bearings (2001, 2002). 

 Rabinowitsch fluid model is one of the models to establish the non-linear 

relationship between the shearing stress and shearing strain rate which can be described 

for one dimensional fluid flow as given in equation (2.1.1). Recently, several researchers 

have investigated the non-Newtonian effect of Rabinowitsch lubricants on various types 

of bearings. Lin et.al.(2001), studied the non-Newtonian effect of Rabinowitsch fluid 

model on the slider bearings, parallel annular disks by Lin, (2012) and parallel 

rectangular squeeze film plates by Lin et.al.(2013).  A squeeze film characteristics 

between a long cylinder and a flat plate analyzed by Singh et. al. (2013), non-Newtonian 

effects on the squeeze film characteristics between a sphere and a flat plate lubricated 

with Rabinowitsch fluid model studied by Singh and Gupta (2012). 

  In this chapter, the effect of surface roughness on the squeeze film characteristic 

between stepped plates with Rabinowitsch fluid is analyzed which has not been studied 

so for. 

 

3.2    Mathematical formulation of the problem. 

 Consider a squeeze film between two parallel stepped plates approaching each 

other with a normal velocity H
t

   
 the bearing surface is rough (at y = 0) as shown in 

Figure 3.1. The lubricant in the film region is taken to be non-Newtonian Rabinowitsch 

fluid. Body forces and body couples are considered to be absent. According to 

hydrodynamic lubrication applicable to thin film (Dowson, 1961) the field equations 
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governing the one dimensional motion of an incompressible non-Newtonian 

Rabinowitsch fluid model in Cartesian co-ordinates (x, y, z) system becomes  

 ,u v
x y
 


 

                                                 (3.2.1) 

 ,xyp
x y




 
                                               (3.2.2)    

 0.p
y





                                                                                                  (3.2.3) 

which are solved under boundary conditions for velocity components are given by 

i)  At the upper surface y = H, u = 0 and  v  = H
t

   
                               (3.2.4a)                             

ii) At the lower surface  y = 0,     

      u = 0   and    v = 0.                                                             (3.2.4b)                                       

 

The film thickness H is assumed to be made up of two parts and is given by 

     , ,i i sH h h x y    for i = 1,2 

where h denotes the nominal smooth part of the film geometry while sh  is the part due to 

the surface roughness is measured from the nominal level. Without loss of generality it 

may be assumed that the mean value of sh   over bearing surface is zero. The film 

thickness component sh  is the function of space co-ordinates x and y, and of the random 

variable . Hence for a given value of   the surface component of the film thickness 

becomes deterministic function of the space variables.  
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Figure 3.1 Squeeze film between rough parallel stepped plates. 
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3.3     Solution of the problem 

Integrating equation (3.2.2) with respect to y subject to the boundary conditions (3.2.4a) 

and (3.2.4b) and using constitutive equation (2.1.1), the expression for velocity 

component can be obtained as   

                       

          
3 4

3 2 2 31 3 1( )
2 2 4 4

p p yu y y H z H y H yH
x x




                 
              (3.3.1) 

 

Using  equation  (3.3.1)  in the continuity equation  (3.2.1)  and  integrating with respect 

to y under the relevant boundary conditions  (3.2.4a)  and  (3.2.4b)  for y, the modified  

Reynolds type equation for non-Newtonian  Rabinowitsch  fluid is obtained in the form 

  

  
3

3 53 12
20

p p HH H
x x x t

 
                     

                             (3.3.2)                             

 

 Let  sf h  be the probability density function of the stochastic film thickness sh  

Taking stochastic average of the equation (3.3.2) with respect to  sf h   the averaged 

modified Reynolds type equation is obtained in the form  

 

   
3

3 5( ) 3 ( )( ) ( ) 12
20

E p E p HE H E H
x x x t

 
                     

                          (3.3.3)  

where the expectancy operator ( )•E is defined by 
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    ( ) ( ) )• • ( s sE f h dh




                                                                             (3.3.4) 

Since the most of the engineering rough surfaces are in Gaussian nature. Hence, the 

Gaussian distribution is given by  

    
2 2 3

7

35 ( ) .
( ) 32

0 elsewhere

s s
s

c h c h c
f h c

     


                            (3.3.5)  

where  / 3c    is the standard deviation.   

 In accordance with the Christensen (1970) stochastic theory for the hydrodynamic 

lubrication of rough surfaces, the analysis is done for two types of one- dimensional 

surface roughness pattern viz. one-dimensional longitudinal surface roughness pattern 

and transverse roughness pattern. 

 For one - dimensional longitudinal roughness pattern, the roughness is assumed to 

have the form of long, narrow ridges and valleys running in the x- direction. The film 

thickness therefore described by a function of the form  

  ,i i sH h h y     for  i = 1, 2.                                                   (3.3.6) 

and stochastic modified Reynolds equation (3.3.3) takes the form  

 

             
3

3 5( ) 3 ( ) ( )( ) ( ) 12
20

E p E p E HE H E H
x x x t

 
                     

                        (3.3.7)   

 

  For one dimensional Transverse roughness, the roughness is assumed to have the 

form of long narrow ridges and furrows running in the direction perpendicular to the 
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direction of sliding i.e. in the y-direction. The film thickness is therefore described by the 

function of the form  

    ,i i sH h h x     for   i = 1, 2         (3.3.8) 

and the stochastic modified Reynolds equation takes the form   

 

                3

3 5

1 3 1 ( )12
1 120

E p E p E H
x x x tE E

H H

 

 
            

                  

                  (3.3.9)                                                                    

Equations   (3.3.7) and (3.3.9) together can be written as  

 

                
3

3 5( ) 3 ( ) ( ), , 12
20

E p E p E HG H c G H c
x x x t

 
                     

         (3.3.10)     

where 

              
 

1

for longitudinal roughness

, 1 for transverse roughness

E H

G H c
E

H






   
     

  

                 32 2
7

35 ,
32

c

s s
c

E H H c h dh
c 

    

              
 32 2

7

1 35 .
32

c
s

s
c

c h
E dh

H c H

   
    

Equation (3.3.10) is a non- linear equation, hence it is not easy to find its solution in 

closed form by using analytical methods. Hence, the small perturbation method is used to 

find its solution. The squeeze film pressure can be perturbed as,  

 0 1p p p                                                                                      (3.3.11) 
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Substituting into the Reynolds type equation (3.3.10) and neglecting the higher order 

terms of  ,  the two separated equations governing the squeeze film pressure 0p  and 1p

are obtained respectively as. 

  3 0( )( , ) 12 ,E p hG H c
x x t


        

                                      (3.3.12) 

    
3

5 30 1( ) ( )3 ( , ) ( , ) .
20

E p E pG H c G H c
x x x
               

                        (3.3.13)    

Using boundary conditions  

 
( ) 0E p
x





   at   x = 0   , 

 the modified Reynolds type equation for determining the squeeze film pressure is 

obtained from the equation (3.3.12) and (3.3.13) as 

                     

 
 

0
3

12( )
( , )

i

i

h xE p t
x G H c

  


  and                                            (3.3.14) 

 
 

  

3

1
7

1296

5 ,
i

i

h xE p t
x G H c

 
 


                                                  (3.3.15)   

where   

 1ih h  and   1ip p   for the region   0 ,x KL                                  (3.3.16a)

 2ih h   and 2ip p  for the region  .KL x L                            (3.3.16b) 
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                  
 

1

for longitudinal roughness

, 1 for transverse roughness

i

i i

i

E H

G H c
E

H




    
   
   

 

where   i i sH h h   for i =1, 2.  

The relevant boundary conditions for the pressure are 

 1 2( ) ( ) at ,E p E p x KL                                         (3.3.17a) 

 2( ) 0 at .E p x L                                                                             (3.3.17b)                                                     

The fluid film pressure for the Region- I:        

           

   

   

2 2 2 2 2

1 3 3
1 1 2 2

4 4 4 4 4

7 7
1 1 2 2

(1 ) 324( ) 6
5( , ) ( , )

(1 )
( , ) ( , )

h K L x L K hE p
t tG H c G H c

K L x L K
G H c G H c

  
        

     


   
  

    

                     (3.3.18) 
                                           

The fluid film pressure for the Region - II: 

            
     
2 2 4 4

2 3 7

2 2 2 2

3246 .
5, ,

h L x h L xE p
t tG H c G H c

  
          

    
   

                  (3.3.19)                                        

The non-dimensional pressure in the region I (3.3.18) and in the region II (3.3.19) are 

obtained in the form    

            

   
  

 
  

 
  

 
  

2

4

2 * 2
* 1
1 3 3

* *2
1 1 2 2

4 * 4

7 7
* *

1 1 2 2

1 54
5, ,6

,
1

, ,

K x KpE p h G H c G H cL
t

K x K

G H c G H c





               
           

                          (3.3.20) 

               
  

 
  

2 4* *

* 2
2 3 7* *2

2 2 2 2

1 154 ,
5, ,6

x xpE p h G H c G H cL
t





                
   

                        (3.3.21) 
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where   

 2 * 1 2
1 2

0 0

, , , .h hxL x h h
L h h

    
                      

 

The load carrying capacity E(W)  is obtained in the form  

              1 2
0

( ) 2 ( ) 2 ( ) .
KL L

KL

E W b E p dx b E p dx                                              (3.3.22)     

The non-dimensional mean load carrying capacity *W is obtained in the form   

                

3 3 3
* 2

* 3 3
3 1 2

5 5

* 7 7
1 2

( ) (1 K ) 324
( ( , )) ( (1, )) 258

.
(1 K )

( ( , )) ( (1, ))

E W h KW h G H c G cb L
t

K
G H c G c




 
         

 
  

  

                       (3.3.23)   

 Writing  2hh
t t




   
in the equation (3.3.22) the squeezing time for reducing the film 

thickness from the initial value 0h   of 2h  to a final value 
fh  is given by    

  
0

3 3
3

3 33
1 1 2 2

25 5

7 7
1 1 2 2

1 324
( ( , )) ( ( , )) 258

( ) 1
( ( , )) ( ( , ))

fh

h

K K L
G H c G H cbLt dh

E W K K
G H c G H c




  
   

            

               (3.3.24) 

which in the non- dimensional form is  

              *

3 3

* * * 3 * * 312
1 2 3 2 2* *0

23 5 5

* * * 7 * * 7
1 2 3 2 2

1 324
( ( , , )) ( ( , , )) 25( )

8 1
( ( , , )) ( ( , , ))

f

s s

h

s s

K K
G h h h C G h h CE W h t

t dh
bL K K

G h h h C G h h C





  
   

           

          (3.3.25) 
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h
h

h
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* 2
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h
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     
*

0
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h
h
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3.4     Results and discussion 

 In this chapter, the effect of surface roughness on the squeeze film lubrication 

between parallel stepped plates with Rabinowitsch fluid is analysed, and on the basis of 

the Christensen stochastic theory for the study of rough surfaces. By considering two 

different types of one dimensional roughness pattern viz. longitudinal roughness pattern 

and transverse roughness pattern. The effect of surface roughness is characterised by 

roughness parameter C. The limiting case of  0C  corresponds to smooth case studied 

by Naduvinamani et. al. (2015).  

 3.4.1    Load carrying capacity 

 The variation of non-dimensional load carrying capacity *W with *H for different 

values of   with 0.5K   and 0.1C   is shown in Fig. 3.2 for both the longitudinal and 

transverse roughness patterns. It is observed that, the load carrying capacity *W  decreases 

for increasing value of *H  for both longitudinal and transverse roughness patterns. 

Further, it is also observed that *W  increases for decreasing values of , i.e. load carrying 

capacity increases for dilatant fluids and decreases for pseudoplastic lubricants for both 

type of   roughness patterns. The variation of non-dimensional loads carrying capacity *W  

with  *H  for different values of K with  0.01    and 0.2C    is shown in Fig. 3.3 for 

both types of   roughness patterns. It is observed that *W decreases for increasing values 

of K the increasing value of K leads to increase the step region and hence increase in the 

area of the fluid film and hence the decrease in pressure and load carrying capacity. From 

the Fig. 3.4 it is observed that increasing values of roughness parameter C, the load 

carrying capacity *W increases for transverse roughness pattern and decreases for the 

longitudinal of roughness pattern. 
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3.4.2   Squeeze film time 

 The variation of non dimensional squeeze film time *t  with *
fh for different values 

of   with 0.2C , 0.5K   and. *
3 0.15h   is shown in the Fig.3.5.  For both type of 

surface roughness patterns. A significant increase in *t is observed for dilatant fluids as 

compared to the Newtonian case. Further, the increase (decrease) in *t  is more for 

transverse (longitudinal) roughness pattern. Figure 3.6 depicts the variation of non- 

dimensional squeeze film time *t  with *
fh for different values of K  with 0.01  , 0.2C

and *
3 0.15h   as value of K  increases  the squeeze film time decreases in both 

longitudinal and transverse roughness  patterns. Figure 3.7 depicts the variation of non- 

dimensional squeeze film time *t  with *
fh  for different values of C with 0.01  , 0.4K   

and *
3 0.15h  , it is observed that as C increases *t  increases (decreases) for longitudinal 

(transverse)  roughness pattern in case of pseudoplastic  fluids  ( 0.01  )  where as the  

reverse  trend is observed for the dilatant  lubricants ( 0.01   )  which is evident in 

Fig.3.8.  
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3.5 Conclusions    

 The squeeze film lubrication between rough stepped plates with Rabinowitsch 

fluid is presented in this chapter. It is found that there is significant increase in load 

carrying capacity for dilatant fluids as compared to the corresponding Newtonian fluids 

for both longitudinal and transverse roughness pattern whereas the reverse trend is 

observed for the pseudoplastic lubricants. The response time *t  increases for decreasing 

values of  , i.e. the response time is more for dilatant lubricants and less for 

pseudoplastic lubricants 
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Figure 3.2  Variation of non-dimensional load carrying capacity *W  with    

                   *H for different values of   with K = 0.5 and C = 0.1 
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  Figure 3.3.  Variation of non-dimensional load carrying capacity *W with           
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Figure 3.4  Variation of non-dimensional load carrying capacity *W with *H  

                 for different values of C with K= 0.5 and 0.01   
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Figure 3.5   Variation of non-dimensional time of approach *t  with *
fh for 

                   different values of   with C = 0.2, K = 0.5, *
3 0.15h  . 
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Figure.3.6   Variation of non-dimensional time of approach *t  with *

fh  for 

    different values of K with 0.01  , C = 0.2, *
3 0.15h  . 
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Figure.3.7   Variation of non-dimensional time of approach *t  with *
fh   for 

                    different values of C with  0.01  ,  K = 0.4, *
3 0.15h     
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Figure 3.8    Variation of non-dimensional time of approach *t  with *
fh  for 

           different values of C with 0.01   , K = 0.4, *
3 0.15h   


