CONTENTS

List of tables
List of figures
List of plates

CHAPTER 1 INTRODUCTION 1-15

CHAPTER 2 REVIEW OF LITERATURE 16-44

Composition of silk fiber 17
Degumming of silk cocoons 19
Demineralization of silk cocoons 23
Grafting of silk fiber 27
Pigmentation profile 34

CHAPTER 3 MATERIALS AND METHODS 45-62

MATERIALS 45
METHODS 45
DEGUMMING 45

Preparation of banana plant extract (‘kolakhar’) 45
Preparation of lemon juice 46
Preparation of the jelly like substance from the seed sac of elephant apple 46

Cocoon weight 46

Degumming with sodium carbonate solution (control) 46

Degumming with kolakhar solution 47

Degumming with lemon juice solution 47

Degumming with slimy solution of elephant apple 47

Degumming under high temperature and pressure (autoclave) 49

Degumming of cocoons for reeling 49

Degumming loss percentage 49

DEMINERALIZATION 50

Treatment with EDTA solution 50

Treatment with kolakhar solution 50

Treatment with lemon juice solution 50

Treatment with potassium carbonate and citric acid solutions 50

Degumming 51
Reeling 51

GRAFTING 51

Grafting with BSA and casein 51

Characterization of silk fiber after degumming, demineralization and grafting 52

Tensile properties 52

Denier 53

Surface morphology by Scanning Electron Microscopy (SEM) 53

Elemental analysis by Energy Dispersive X-ray Spectroscopy (EDX) 54

Elemental analysis by Atomic Absorption Spectrophotometry 54

Chemical property by Fourier Transform Infrared Spectroscopy (FTIR) 54

Thermal properties by Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC) 54

Crystalline property by X-ray diffraction (XRD) 55

Chemical resistance measurement 55
CHAPTER 4

RESULTS

DEGUMMING

Degumming loss percentage

Effect of bio-degumming agents at different pH
concentration

Effect of bio-degumming agents at different treatment time

Reeling

Tensile properties

Surface morphology

Chemical property

Thermal properties

DEMINERALIZATION

Mechanism

Reeling

Surface morphology

Elemental analysis by Energy Dispersive X-ray Spectroscopy (EDX)

Elemental analysis by Atomic Absorption Spectrophotometry

Tensile properties

Chemical property

GRAFTING
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
<td>83</td>
</tr>
<tr>
<td>Effect of Protein Concentration on Graft Yield</td>
<td>83</td>
</tr>
<tr>
<td>Effect of Initiator Concentration on Graft Yield</td>
<td>84</td>
</tr>
<tr>
<td>Effect of Reaction Time on Graft Yield</td>
<td>85</td>
</tr>
<tr>
<td>Effect of Reaction Temperature on Graft Yield</td>
<td>85</td>
</tr>
<tr>
<td>Tensile properties</td>
<td>87</td>
</tr>
<tr>
<td>Surface morphology</td>
<td>87</td>
</tr>
<tr>
<td>Chemical property</td>
<td>88</td>
</tr>
<tr>
<td>Water Retention Value (WRV)</td>
<td>88</td>
</tr>
<tr>
<td>Dynamic contact angle</td>
<td>89</td>
</tr>
<tr>
<td>Chemical resistance measurement</td>
<td>89</td>
</tr>
<tr>
<td>Thermal properties</td>
<td>92</td>
</tr>
<tr>
<td>Crystalline property</td>
<td>94</td>
</tr>
<tr>
<td>PIGMENTATION PROFILE</td>
<td>95</td>
</tr>
<tr>
<td>Analysis of UV-Visible Spectroscopy</td>
<td>95</td>
</tr>
<tr>
<td>Analysis of Thin Layer Chromatography (TLC)</td>
<td>96</td>
</tr>
<tr>
<td>Analysis of Column chromatography</td>
<td>97</td>
</tr>
<tr>
<td>Analysis of Gas Chromatography- Mass Spectroscopy</td>
<td>98</td>
</tr>
</tbody>
</table>