List of Figures

2.1 Isothermal section of Al–corner of Al–Mg–Sc phase diagram at 430°C [1] 16
2.2 Isothermal Section of Al–corner of Al–Sc–Zr phase diagram at 600°C 19
2.3 Grain Refinement as a function of Sc addition in pure Al and Al–Zn–Mg–Zr 24
2.4 Schematic of tensile tests with different in-plane angles α. .. 40

3.1 Schematic of tensile tests with different in-plane angles α. .. 68

4.1 SEM image of Al–6Mg alloy annealed at 200°C for 1 h .. 73
4.2 SEM image of Al–6Mg alloy annealed at 200°C for 1 h .. 73
4.3 SEM image of Al–6Mg alloy annealed at 300°C for 1 h .. 74
4.4 SEM image of Al–6Mg alloy annealed at 400°C for 1 h .. 74
4.5 SEM image of Al–6Mg–0.2Sc alloy annealed at 300°C for 1 h .. 75
4.6 SEM image of Al–6Mg–0.2Sc alloy annealed at 200°C for 1 h (Fracture Surface) 75
4.7 SEM image of Al–6Mg–0.2Sc alloy annealed at 300°C for 1 h (Fracture Surface) 76
4.8 SEM image of Al–6Mg–0.6Sc alloy (As cast) ... 76
4.9 SEM image of Al–6Mg–0.6Sc alloy (As cast) (Fracture Surface) ... 77
4.10 SEM image of Al–6Mg–0.6Sc alloy annealed at 200°C for 1 h (polished and etched surface) 78
4.11 SEM image of Al–6Mg–0.6Sc alloy annealed at 200°C for 1 h (fracture surface) 79
4.12 SEM image of Al–6Mg–0.6Sc alloy annealed at 300°C for 1 h .. 80
4.13 DTA curves alloy 2 and 3 80
4.14 Fracture Toughness vs. Temperature of alloys 81
4.15 Microhardness vs. Temperature of alloys 82
4.16 Average Microhardness of alloys vs. Fracture Toughness .. 83

5.1 SEM image of alloy 4 (as cast) 96
5.2 SEM image of alloy 4 (as cast) 97
5.3 SEM image of alloy 4 annealed at 200°C 97
5.4 SEM image of alloy 4 annealed at 300°C 98
5.5 SEM image of alloy 5 (As cast)(Polished surface) ... 98
5.6 SEM image of alloy 5 annealed at 200°C 99
5.7 SEM image of alloy 5 annealed at 300°C 99
5.8 SEM image of alloy 5 annealed at 200°C 100
5.9 SEM image of alloy 5 annealed at 400°C 100
5.10 SEM image of alloy 5 annealed at 400°C 101
5.11 SEM image of alloy 5 (As cast) 101
5.12 SEM image of Alloy 5 (As cast) 102
5.13 SEM image of alloy 5 annealed at 200°C 104
5.14 SEM image of alloy 5 annealed at 200°C 104
5.15 SEM image of alloy 5 annealed at 300°C 105
5.16 SEM image of alloy 5 annealed at 300°C 105
5.17 SEM image of alloy 5 annealed at 400°C 106
5.18 SEM image of alloy 5 annealed at 400°C 106
5.19 TEM image of Alloy 4 (As cast) 107
5.20 TEM image of alloy 4 (As cast) 107
5.21 FFT image of alloy 4 (As cast) 108
5.22 TEM image of alloy 4 annealed at 400°C 108
5.23 TEM image of alloy 4 annealed at 400°C 109
5.24 TEM image of alloy 5 (As cast) 109
5.25 TEM image of alloy 5 (As cast) 110
5.26 TEM image of alloy 5 annealed at 400°C 110
5.27 TEM image of alloy 5 annealed at 400°C 111
5.28 TEM image of alloy 5 annealed at 400°C 111
5.29 Fracture toughness(exp) vs. temperature of alloys 4 and 5 .. 114
5.30 Fracture toughness(Calculated) vs. temperature of alloys 4 and 5 115
5.31 Average microhardness vs. temperature of alloys 4 and 5 .. 115
5.32 Fracture toughness vs. yield strength of alloys 4 and 5 .. 116
5.33 Yield strength vs. temperature of alloys 4 and 5 .. 116

6.1 The S–W plots for the Al–6Mg–xSc (x = (a) 0, (b) 0.2 wt.% alloys after heat treatments at 473K, 573K and 673K. ... 135
6.1 The S–W plots for the Al–6Mg–xSc (x = (c) 0.4 wt.% alloys after heat treatments at 473K, 573K and 673K. ... 136
6.2 The isothermal variation of the positron trapping rates \(\kappa_1\) and \(\kappa_2\) of the alloys Al–6Mg–xSc (x = 0, 0.2 and 0.4 wt.% at three different temperatures 473K, 573K and 673K. ... 137

vii
6.3 The positron lifetimes τ_1 and τ_2 and relative intensity I_2 as a function of Sc concentration in the Al–6Mg–xSc alloy. .. 138

6.4 The CDB spectra of the as–cast Al–6Mg–xSc (x = 0, 0.2 and 0.4 wt.%) alloys and that of elemental Mg. The spectra are peak normalized with that of Al, which is shown by the horizontal line at $y = 0$. 139

6.5 The isothermal variation of the positron lifetimes τ_1 and τ_2 and relative intensity I_2 of the Al–6Mg alloy at three different temperatures 473K, 573K and 673K. . 140

6.6 TEM image of Al–6Mg base alloy annealed at 673K showing precipitates. 141

6.7 The CDB spectra of the Al–6Mg alloy after the final (4 hours) annealing at 473K, 573K and 673K. The curve of elemental Mg is also shown. The spectra are peak normalized with that of Al, which is shown by the horizontal line at $y = 0$. 142

6.8 TEM image of Al–6Mg base alloy in as–cast condition. 143

6.9 The isothermal variation of the S parameter of the Al–6Mg alloy at three different temperatures 473K, 573K and 673K. 144

6.10 The isothermal variation of the S parameter of the Al–6Mg–0.2Sc alloy at three different temperatures 473K, 573K and 673K. 145

6.11 The isothermal variation of the positron lifetimes τ_1 and τ_2 and relative intensity I_2 of the Al–6Mg–0.2Sc alloy at three different temperatures 473K, 573K and 673K. 150

6.12 TEM image of Al–6Mg–0.2Sc alloy annealed at 473K, showing dislocation pinning. 151
6.13 TEM image of needle-shaped fine precipitates of Al–6Mg–0.2Sc as-cast alloy. .. 151
6.14 The CDB spectra of the Al–6Mg–0.2Sc alloy after the final (4 hours) annealing at 473K, 573K and 673K. The curve of elemental Mg is also shown. The spectra are peak normalized with that of Al, which is shown by the horizontal line at y = 0. .. 152
6.15 TEM image of Al–6Mg–0.2Sc alloy annealed at 673K showing high precipitate density. 153
6.16 The isothermal variation of the positron lifetimes τ_1 and τ_2 and relative intensity I_2 of the Al–6Mg–0.4Sc alloy at three different temperatures 473K, 573K and 673K. 154
6.17 TEM image of Al–6Mg–0.4Sc as-cast alloy showing dislocation pinning. .. 155
6.18 The CDB spectra of the Al–6Mg–0.4Sc alloy after the final annealing at 473K, 573K and 673K. The curve of elemental Mg is also shown. The spectra are peak normalized with that of Al, which is shown by the horizontal line at y = 0. .. 156
6.19 Another TEM image of the Al–6Mg–0.4Sc as-cast alloy. .. 157
6.20 The isothermal variation of the S parameter of the Al–6Mg–0.4Sc alloy at three different temperatures 473K, 573K and 673K. 158

7.1 The coincidence Doppler broadened spectra of the as-cast Al–6Mg, Al–6Mg–0.4Sc and Al–6Mg–0.4Sc–0.2Zr alloys and that of elemental Mg. The spectra are peak normalized with that of Al, which is shown by the horizontal line at y = 0. 175
7.2 The positron lifetimes τ_1 and τ_2 and intensity I_2 in the Al-6Mg, Al-6Mg-0.2Sc, Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr (shown against $x = 0.6$) samples.

7.3 The S-W plots for (a) Al–6Mg–0.4Sc and (b) Al–6Mg–0.4Sc–0.2Zr alloys after heat treatments at 473K, 573K and 673K.

7.4 The isothermal variation of the positron lifetimes τ_1 and τ_2 and relative intensity I_2 of the alloy Al-6Mg-0.4Sc at three different temperatures 473K, 573K and 673K.

7.5 TEM image of Al–6Mg–0.2Sc alloy annealed at 473K.

7.6 The coincidence Doppler broadened spectra of the Al–6Mg–0.4Sc alloy after the final annealing at 473K, 573K and 673K. The curve of Mg is also shown. The spectra are peak-normalized with that of Al, which is shown by the horizontal line at $y = 0$.

7.7 The isothermal variation of the S parameter of the Al–6Mg–0.4Sc alloy at three different temperatures 473K, 573K and 673K.

7.8 The isothermal variation of the positron trapping rates κ_1 (closed symbols) and κ_2 (open symbols) of the alloys Al-6Mg-0.4Sc and Al-6Mg-0.4Sc-0.2Zr at three different temperatures 473K (square), 573K (circle) and 673K (triangle).

7.9 TEM image of Al–6Mg–0.4Sc as–cast alloy.

7.10 TEM image of Al–6Mg–0.4Sc–0.2Zr alloy annealed at 673K.
7.11 The isothermal variation of the positron lifetimes τ_1 and τ_2 and relative intensity I_2 of the alloy Al-6Mg-0.4Sc-0.2Zr at three different temperatures 473K, 573K and 673K. 184

7.12 The isothermal variation of the S parameter of the Al–6Mg–0.4Sc–0.2Zr alloy at three different temperatures 473K, 573K and 673K. 185

7.13 The coincidence Doppler broadened spectra of the Al–6Mg–0.4Sc–0.2Zr alloy after the final annealing at 473K, 573K and 673K. The curve of elemental Mg is also shown. The spectra are peak-normalized with that of Al, which is shown by the horizontal line at $y = 0$. .. 186

7.14 Another TEM image of Al–6Mg–0.4Sc–0.2Zr alloy annealed at 673K. 187

8.1 Pole figures of Al–6Mg alloy 195
8.2 ODF of the Al–6Mg alloy 196
8.3 Variation of main texture components for different alloys under investigation 197
8.4 Fracture toughness of the experimental alloys 197
8.5 ODF measured by XRD for alloys (a) 0.2Sc, (b) 0.6Sc and (c) 0.4Sc–0.2Zr 198
8.6 (a) Schematic of tensile tests with different in-plane angles α. (b) Calculated r-value profile for different specimens 199
8.7 High resolution micrograph of Al–6Mg alloy showing dispersoids 200
8.8 High resolution micrograph of Al–6Mg alloy showing microtwins 204
8.9 High resolution micrograph of 0.2 Sc alloy showing needles of Al₃Sc; strain field around the needles is visible. .. 205
8.10 High resolution micrograph of 0.4Sc – 0.2Zr alloy showing that the facets are absent .. 205