Table of Contents

List of Tables xii
List of Figures xiii
Abbreviations xvi
Thesis Structure xvii

Chapter 1 Introduction and Review of Literature 1

1.1 Introduction 2
1.1.1 Classification of Microalgae 3
1.1.1.1 Chlorophyta 4
1.1.1.2 Cyanophyta 4
1.1.1.3 Chrysophyta 5
1.1.1.4 Bacillariophyta 5
1.1.2 Factors Influencing the Growth of Microalgae 7
1.1.2.1 Light 7
1.1.2.2 pH 7
1.1.2.3 Temperature 8
1.1.2.4 Nutrients 8
1.1.2.5 Competition and Predation 8
1.1.3 Microalgal Reproduction 9
1.1.3.1 Binary Fission 9
1.1.3.2 Fragmentation 9
1.1.3.3 Hormogone Formation 9
1.1.3.4 Akinetes 10
1.1.3.5 Zoosporos 10
1.1.3.6 Aplanospores 10
1.1.3.7 Hypnospores 10
1.1.3.8 Palmella Stage
1.1.3.9 Autosporites
1.1.3.10 Endosporites
1.1.3.11 Auxosporites
1.1.3.12 Parthenosporites
1.1.4 Microalgal Culturing
1.1.4.1 Laboratory Scale Culturing
1.1.4.2 Large Scale Culturing
1.1.5 Potential of Microalgae
1.1.5.1 Microalgae for Human and Animal Nutrition
1.1.5.2 Pigments
1.1.5.3 Stable Isotope Biochemicals
1.1.5.4 Microalgae for Waste Water Treatment
1.1.5.5 Microalgae for Renewable Energy
1.2 Gap Area
1.3 Objectives

Chapter 2 Microalgal Distribution Pattern in Freshwater Lake and Pond

2.1 Introduction
2.2 Materials and Methods
2.2.1 Sampling Site
2.2.2 Physico-Chemical Analysis
2.2.3 Biological Analysis
2.3 Results
2.3.1 Nutrients and Physical Factors
2.3.2 Biology
2.4 Discussion 35
2.4.1 Hydrology of the Lake and Pond 35
2.4.2 Microalgal Community 38
2.4.2.1 Cholorophyta in Lake and Pond 38
2.4.2.2 Bacillariophyta (Diatoms) in Lake and Pond 39
2.4.2.3 Cyanophyta in Lake and Pond 39
2.4.2.4 Factors Affecting Microalgal Community Structure 39
2.5 Conclusion 42

Chapter 3 Role of Nutrients Input Pattern on the Growth Dynamics of Microalgal Community 43
3.1 Introduction 44
3.2 Materials and Methods 46
3.2.1 Sampling Site and Collection 46
3.2.2 Physico-Chemical and Biological Analysis 46
3.2.3 Experimental Details 47
3.3 Results 49
3.3.1 Influence of Nutrients Input Pattern on Microalgal Growth, Diversity and Population 51
3.3.2 Growth of Heterotrophic Bacteria with Respect to Microalgal Growth on Varied Supply Pattern of Nutrients 59
3.4 Discussion 61
3.5 Conclusion 64

Chapter 4 Culturing of Microalgae in Engineered System 65
4.1 Introduction 66
4.2 Materials and Methods 67
4.2.1 Experimental Setup 67
4.2.2 Batch Operation 72
4.2.3 Continuous Operation 72
4.2.4 Physico-Chemical and Biological Analysis 73
4.2.4.1 Qualitative Lipid Content Estimation 73
4.3 Results 74
4.3.1 Batch RPR Ecosystem 74
4.3.2 Continuous RPR Ecosystem 76
4.4 Discussion 80
4.5 Conclusion 83

Chapter 5 Factors Influencing Growth and Lipid Content of Microalgal Consortium in RPR 84
5.1 Introduction 85
5.2 Materials and Methods 86
5.2.1 Experimental Setup 86
5.2.2 Methods for Improving the Lipid Production of the Consortium 89
5.2.2.1 Addition of Sodium Silicate Concentrated Biomass in Night 89
5.2.2.2 Addition of Sodium Silicate to Microalgal Biomass at Night in Pond 89
5.2.2.3 Effect of pH On Biomass and Lipid Production 90
5.2.2.4 Effect of Cell Division Pattern on Biomass and Lipid Production 91
5.2.3 Qualitative and Quantitative Lipid Content Estimation 92
5.3 Results 93
5.3.1 Addition of Sodium Silicate to Microalgal Biomass in Night 93
5.3.1.1 Dosing to Concentrated Biomass in Dark at Night 93
5.3.1.2 Dosing to RPR at Night 94
5.3.2 Effect of pH on Biomass and Lipid Production 96
5.3.2.1 Operation of RPR under Uncontrolled pH 96
5.3.2.2 Operation of RPR under Controlled pH 96
5.3.3 Effect of Nutrient Supply Based Cell Division Regulation on Lipid Production 98
5.3.4 Relation between Reactor Parameters with Biomass and Lipid Production 100
5.4 Discussion 102
5.5 Conclusion 105

Chapter 6 Summary and Conclusions 106
References 109
Appendix 136
List of Publications 140