BIBLIOGRAPHY

Ahmad, E. (1958) : Geomorphic Outline of Chotanagpur, Geographers Outlook, Ranchi University, Vol. 2 No. 3 pp. 16 - 22.

Donahue, J.J. (1972) : Measuring drainage density with dot planimeter.

Dov Nir, (1957) : Landform analysis of Mt. Carmel, Geographical Review,

Dubey, A. (1985) : Trans-Yamuna Region of Allahabad District : A Study in

Dubey, R.S. (1965) : Some aspects of Geomorphology of the Rewa Plateau in
Madhya Pradesh, Madhya Bharti Journal of the University of

Dubey, R.S. (1969) : Erosion Surfaces on the Rewa Plateau, Madhya Pradesh,

Dunn, J.A. (1938) : Post - Mesozoic movements in the northern part of the

Dury, G.H. (1972) : Some current trends in Geomorphology, Earth Science

Heron, A.M. (1938) : The Physiography of Rajputana, Proceeding 25th Indian Science Congress, Part - 2, pp. 119 - 32.

Kumar, A. (1978) : Some observations on slope profiles in the Pat Region, Ranchi. Proceedings Symposium or morphology and Evolution of Landforms, Department of Geology. University of Delhi, pp. 41-54.

 of Geology, Vol. 73, pp. 178 - 180.

Singh, R. L. (1971) : India, a regional geography "National Geographical
 Society of India, Varanasi, pp. 1 - 673.

 New Delhi, pp. 55 - 100.

Singh, R.P. (1956) : Geomorphological Evolution of Chotanagpur Highlands,
 Ph.D. Thesis (Published), Department of Geography, University
 of London, pp. 1 - 250.

Singh, Savindra (1972) : Altimetric analysis a morphometric technique of

Singh, Savindra, (1975) : Methods and approaches of the study of Landforms,
 5 - 12.

Singh, Savindra (1976) : On the quantitative parameters for the computation
 of drainage density, texture and frequency. A case study of a
 part of the Ranchi Plateau. National Geographer, Vol. 10 (1),
 pp. 21 - 31.

======== O =======
1. Impact of biotic weathering at the top of Chuhiia hill, where block disintegration has taken place due to deep penetration of roots of trees.

2. Sandstone beds dipping down slope indicating their fall down slope over Chuhiia hill.
3. Broken sandstone ledges due to penetration of roots of trees over Chuihia hill. Here sandstones are interbedded with thin layers of shales.

4. Bare-rock tree face of Chuihia scarps at the height of over 500 metres.
5. A case of hollowing of sandstones at the top of Chuihia hill. It is a case of disintegration caused by biotic weathering.

7. A view of angular conglomerate derived from palaeozoic shales on 38° slope over Kaimur, towards north down.

8. A vertical cross section of a small hill over Chuihia range. The weathered fine materials are strewn all over the slope.
9. A sandstone anvil formation over Naru Pahar. Here sheet of sandstone hanging over like a roof because of falling of shales below.

10. Weathered cross section of slope over down north Kaimur hill. Here alternate beds of sandstone and shales are lying almost in horizontal manner.
11. Vertical face of Chuihia hill, covered with dense vegetation.

12. A section of Chuihia hill range with strata of sandstone and shale. A clear bend in strata is seen here.
13. A view of valley of Tons river facing Kushia hill of Bhandar range.

14. Confluence of river Tons and Serainji nala developed over alluvion country (Upstream)
15. Tons river valley having steep alluvial bank facing Bhander Ranges.

16. Down word direction beds of Tons river having sandstones above along the valley (5 km. east of Maihar town).
17. A view of stony beds of Bihar river near Rewa Town.

18. A view of confluence of Bihar and Bichia river near Rewa town.
19. The author is pointing out a case of disintegration of rocks due to biotic weathering over Kaimur ranges.