INTRODUCTION
Introduction

Until recently anaplasia and related morphological changes were the sole criteria of cellular transformation in cancer. The interpretation of morphological changes is subject to individual variation. Different observers may see different things in the same object. This subjective element in morphological diagnosis is most pronounced in the late stages of anaplasia and dysplasia. This is the source of many diagnostic differences of opinion just at a time where the correct diagnosis is most important from therapeutic and prognostic viewpoint.

Mechanical changes may provide more accurate criteria for recognition of anaplastic transformation of the cell, but this advance, however, is in early stages.

The possibility that malignant transformation of the cells may entail a change in the antigenic structure is generally accepted. This change may involve the acquisition of new antigenic substances or may be in the nature of deletion or loss of antigenic component.
Partial or complete loss of blood group isoantigens has been reported for both premalignant and malignant lesions developing from the epithelium in which these substances are normally present.

The presence of blood group isoantigens A, B, and O(0) in cells and tissues other than erythrocytes is well documented. They have also been found to be present in various body fluids and glandular secretions. On the basis of presence or absence of these isoantigens in saliva an individual is said to be secretor or non-secretor. The solubility of A, B, O isoantigens is different in these two groups of individuals. In secretors both ethanol and water soluble antigens are present whereas in non-secretors only ethanol soluble antigens are present.

The distribution of the blood group isoantigens in various tissues of the body is as follows:

1. In cell wall of endothelium - through out the cardiovascular system,
2. In cell wall of stratified epithelium - skin, non-secretating squamous epithelium and transitional epithelium.
3. In cell wall of simple epithelium - irregular and independent of secretor status.

4. In paracortical cells and brain tissues - absent.

5. In connective tissue cells - absent.

The A, B, C antigens in tissues can be demonstrated by mixed cell agglutination reaction (MCAR) of specific red cell agglutination (SRCA) reaction, immunofluorescence and immunoperoxidase techniques. MCAR was originally developed to demonstrate the presence of A and B antigens in platelets and epidermal cells. A, B, C groups of the tissues can be reliably determined by this method on paraffin sections.

The uterine cervix is commonly the site of development of squamous cell carcinoma. Because of its accessibility the cervix lends itself to the study of the relationship of early lesions to the development of invasive carcinoma. The fate of purely benign reversible lesions such as squamous metaplasia and the more ominous lesions such as severe dysplasia and carcinoma in situ can be studied in detail.
The importance of early diagnosis of cervical malignancy as regards prognosis and treatment can not be over emphasised. Therefore uterine cervix has especially been selected for the study, with the idea that behaviour of A, B, C investigations may prove to be of considerable diagnostic as well as prognostic value and possibly a guide to therapy.