Table of contents

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Contents of the report</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Abstract and problem definition statement.</td>
<td>i</td>
</tr>
<tr>
<td>2</td>
<td>Significance of the above mentioned doctoral studies.</td>
<td>ii</td>
</tr>
<tr>
<td>3</td>
<td>Scope of the problem.</td>
<td>iv</td>
</tr>
<tr>
<td>4</td>
<td>Organization of the thesis and table of contents</td>
<td>iv-ix</td>
</tr>
<tr>
<td>5</td>
<td>List of abbreviation</td>
<td>x</td>
</tr>
<tr>
<td>6</td>
<td>List of figures</td>
<td>xi</td>
</tr>
<tr>
<td>7</td>
<td>List of graph</td>
<td>xii</td>
</tr>
</tbody>
</table>

 1.1 Introduction.
 1.2 Comparison of different diagnostic modalities used in diagnosis of cardiac disease.
 2. Chapter 2– Literature survey.
 2.1 Historical review.
 2.2 Literature survey leading to the problem definition.
 2.3 Versatility and applications of HRV.
 2.4 Sympathetic and parasympathetic activity of Autonomous Nervous System. (ANS)
 2.5 Anatomy and physiology of human heart.
 2.6 Complications due to diabetes and hypertension.
 2.7 Preventive measures for Cardiac complications in diabetic prevalence.
 2.8 Cardiac performance study.
2.9 Extraction of HRV from ECG.
2.10 Statistical analysis.
2.11 Concluding remarks from the literature survey.

3 Chapter 3. Theoretical background
3.1 Study of HRV and the related indices.
3.2 Detail of data acquisition methodology for HRV analysis.
3.3 QRS detector using Pan-Tompkins’s algorithm.
3.4 Simulation software
3.5 Study of Echocardiogram as a diagnostic modality.
3.6 Details of data acquisition from echocardiogram.

4 Chapter 4. Physiology and functioning of human heart.
4.1 Functional description and related anatomy.
4.2 Types of Cardiac Muscle.
4.3 Action Potentials in Cardiac Muscle.
4.4 Velocity of Signal Conduction in Cardiac Muscle.
4.5 Relationship of the Electrocardiogram to the Cardiac Cycle.

5 Chapter 5. Pathology of Diabetes and Hypertension.
5.1 Definition of Diabetes Mellitus and its impact on different organs.
5.2 Complication due to hypertension.

6 Chapter 6. Results, discussions and conclusion, limitations and further scope.
6.1 HRV results.
6.2 Tables for patient data, HRV and echocardiogram indices.
6.3 The Average and Standard Deviation of HRV Indices and their tabulations.
6.4 Echocardiogram Indices
6.5 Statistical Analysis of the Results.
6.6 Summary of Conclusion

7 Chapter 7. Implementation of Mathematical model.
7.1 Mathematical model to demonstrate the functioning of left ventricle.
7.2 Effect of acetylcholine on functioning of heart.
7.3 Mathematical model to demonstrate the reduced signal conduction in neurons in diabetic condition.
7.4 Mathematical model to demonstrate the change in autonomous power in diabetic condition.
7.5 Mathematical model for quantitative assessment of cardiac performance based upon the changes in left ventricular geometry during systole and diastole.

8 Chapter 8. Early diagnosis of LVDD and LVH.
8.1 Left ventricular dysfunction.
8.2 Poincare plot analysis.
8.3 Modified Poincare Plot Analysis Used In Proposed Method.
8.4 Complication of Left Ventricular Hypertrophy (LVH)

9 Chapter 9. Conclusion, limitations of the study, further scope
9.1 Conclusion from statistical findings.
9.2 Conclusion mathematical mode.
9.3 Final overall conclusion
9.4 Limitations of the study.
9.4 Further scope.

List of references.
Author’s Publications

Appendix A Sample case papers.
Appendix B statistical results simulations.
Appendix B Publication reviews.