List of Figures

Figure

1.1 Schematic diagram for TPA. (a) Self TPA and (b) Pump-probe TPA.

1.2 Schematic diagram of 3PA.

1.3 Schematic diagram of a five level system.

1.4 Pump-probe set up for AOS.

1.5 Photocycle of bR molecule [Roy et al. (2001)]. Subscripts indicate peak absorption wavelengths of intermediates in nm.

1.6 Absorption spectra of different intermediate states of bR span the entire visible region [Birge et al. (1999), Stuart et al. (2002)].

2.1 Simplified four level energy diagram to analyse NLA characteristics in fs regime. Solid and dashed arrows indicate the absorptions and relaxations respectively.

2.2 Effect of I₀ on transmittance with time.

2.3 Effect of pulse intensity on population dynamics of each states corresponding to Figure 2.2 [Roy and Yadav (2011)].

2.4 Effect of I₀ on transmittance with time.

2.5 Variation of transmittance versus I₀.

2.6 Transmittance versus time at different I₀ values for β⁽³⁾ = -3.22×10⁻⁸ cm/W (dashed lines) and β⁽³⁾ = -3.22 x 10⁻¹⁰ cm/W (solid lines) [Roy and Yadav (2011)].

2.7 Variation of transmittance with time [Roy and Yadav (2011)].

2.8 Effect of concentration on transmittance.

2.9 Variation of SA to RSA transition intensity with (a) β⁽⁵⁾ and (b) β⁽³⁾.

2.10 Design of fs AOL gates with two inputs I₁ and I₂ [Roy and Yadav (2011)].
2.11 Design of AOL gates with CuPc-doped PMMA thin film and alkoxy phthalocyanine [Roy and Yadav (2011)].

2.12 Effect of pulse frequency on the different logic gates.

3.1 Simplified four level energy diagram to analyse the tunable NLA characteristics in fs regime.

3.2 Effect of intensity on transmittance with time [Roy and Yadav (2013 a)].

3.3 Effect of intensity on normalized population density with time corresponding to Figure 3.2 [Roy and Yadav (2013 a)].

3.4 Effect of concentration on transmittance with time [Roy and Yadav (2013 a)].

3.5 Percentage modulation with concentration. Inset shows the variation of SA to RSA transition intensity with (a) γ_{eff} and (b) β_{eff} [Roy and Yadav 2013 (a)].

3.6 Design of fs AO logic gates with two input pulses [Roy and Yadav (2013 a)].

3.7 Realization of two-input parallel fs AOL gates.

3.8 Simplified three-level energy diagram to describe the RSA in ps and fs regime.

3.9 Variation of transmittance versus time for graphene with 30 ps single laser pulse for different I_0 values and (b)-(d) represent the corresponding variation of the normalized population densities of different states versus time at 532 nm (dashed lines).

3.10 Variation of transmittance versus time for GO, GO-tin porphyrin and GO-copper porphyrin composites at $I_0 = 330$ GW/cm2 and pulse width of 100 fs.

3.11 Variation of transmittance versus time for GO-copper porphyrin with pulse width of 100 fs for different I_0 values.

3.12 Variation of transmittance with time for GO-copper porphyrin at different concentration values with $I_0 = 330$ GW/cm2.

3.13 Effect of pulse frequency for GO-copper porphyrin with pulse width of 50 fs and $I_0 =$
275 GW/cm².

3.14 (a) Effect of intensity on transmittance with time and (b)-(d) corresponding variation of the normalized population densities of \(S_0 \), \(S_1 \) and \(S_n \) states with time for normalized input pulse at 532 nm (dashed lines).

3.15 Variation of transmittance with time for graphene, graphene-zinc porphyrin and graphene-copper porphyrin composites.

3.16 Effect of concentration on transmittance.

3.17 Design of AO universal logic gates for graphene (a), and GO-copper porphyrin (c), with combined normalized input pulse profiles (b,d).

3.18 Design of AO NOT and the universal logic gates for pure graphene at \(I_0 = 12 \) MW/cm² (solid line) and graphene-copper porphyrin composite at \(I_0 = 3.5 \) MW/cm² (dashed line) with combined normalized input pulses at 532 nm.

4.1 Simplified four level energy diagram to analyse RSA to SA conversion in ps regime. Solid and dashed arrows indicate the absorptions and relaxations respectively.

4.2 Effect of pulse intensity on transmittance with time.

4.3 Effect of intensity on population dynamics corresponding to Figure 4.2.

4.4 Variation of transmittance with \(I_0 \).

4.5 Effect of concentration on transmittance with time at \(I_0 = 45 \) GW/cm² (dotted lines) and \(I_0 = 3.0 \) GW/cm² (solid lines).

4.6 Effect of pulse frequency for Ru dioxolene complex with pulse width of 20 ps at \(I_0 = 5 \) GW/cm².

4.7 Design of AO NOT and the universal logic gates (a), and normalized input pulse profiles at 532 nm (b and c).

5.1 Photocycle of bR. Solid and dashed arrows represent thermal and photoinduced
transitions, respectively [Roy and Yadav (2013 b)].

5.2 (a) Schematic diagram for AOS, (b) Simplified energy level diagram of \(B_{570} \rightarrow I_{460} \) transitions in bR.

5.3 (a) Variation of the transmittance of the probe laser beam with time for different peak pump intensity \(I_{m0} \) values at 570 nm, and (b)-(d) corresponding variation of the population in different states.

5.4 Effect of \(\tau_{2} \) (a) and \(\Delta t \) (b) on transmittance at \(I_{m0} = 80 \, \text{GW/cm}^2 \).

5.5 Transmittance of probe beam with time for different values of \(\sigma_{sp} \).

5.6 Effect of pulse frequency on the transmittance of the probe laser beam at 460 nm.

5.7 Design of different AOL gates with two input pulses at 570 nm.

5.8 Energy-level diagram for early ultrafast transitions in bR photocycle.

5.9 (a) Effect of intensity on NTPI at 460 nm for case (i) (solid lines) and for case (ii) (dashed lines). (b) Variation of population dynamics corresponding to case (i). (c) Effect of intensity on NTPI at 580 nm for case (iii). (d) Variation of population dynamics corresponding to case (iii) [Roy and Yadav (2014)].

5.10 Effect of intensity on percentage modulation for all three cases. Inset (a) shows the effect of concentration on NTPI for case (i) (solid lines) and for case (ii) (dashed lines), (b) Effect of concentration on NTPI for case (iii).

5.11 Effect of \(\Delta t \) on NTPI with time for cases (i) and (ii) with high and low modulation respectively. Inset (a) shows the effect of \(\Delta t \) on NTPI with time for case (iii) and inset (b) shows the effect of thickness on NTPI with time for cases (i) and (ii) with solid and dotted lines respectively.

5.12 Effect of the concentration of 40 nm Au-NPs on bR switching characteristics at \(I_{m0} = 1.2 \, \text{MW/cm}^2 \), \(L = 1 \, \text{mm} \) and \(\Delta t = 100 \, \text{fs} \), (i) \(C = 1.3 \times 10^{-11} \, \text{M} \) (\(\tau_{0} = 515 \, \text{fs} \)), (ii) \(C = \)
2.5×10^{-11} \text{ M} (\tau_{\text{B}} = 720 \text{ fs}), \ (\text{iii}) \ C = 3.8×10^{-11} \text{ M} (\tau_{\text{B}} = 800 \text{ fs}). \text{Inset shows the effect of concentration of Au-NPs on the decay kinetics of } \tau_{\text{B}}. \\

5.13 \text{ Effect of pulse frequency on bR and bR-gold nanoparticle AOS characteristics.} \\

5.14 \text{ Design of different AOL operations with bR and bR-gold nanoparticles (a) with combined normalized two input pulses [Roy and Yadav (2014)].} \\

5.15 \text{ Design of two-input parallel AO OR, AND, NOR, and NAND logic gates. (a) Block diagram. (b) Circuit diagram with } I_{\text{m}=1} (45 \text{ GW/cm}^2) \text{ as the intensity for logic ‘1’ state.} \\

6.1 \text{ Simplified three level energy diagram to describe the NLA in fs regime. Solid and dashed arrows indicate the absorptions and relaxations respectively.} \\

6.2 \text{ Variation of transmittance with time for different wavelengths with a 120 fs single laser pulse at } I_0 = 2.64×10^{10} \text{ W/cm}^2. \\

6.3 \text{ Effect of intensity on transmittance with time at 120 fs laser pulse (a) at 460 nm, (b) at 530 nm, and (c) and (d) corresponding variations in normalized population density of different states with time, respectively at different } I_0 \text{ values.} \\

6.4 \text{ Variation of transmittance with time for different laser pulse width values at } I_0 = 4.5×10^{10} \text{ W/cm}^2. \\

6.5 \text{ Variation of transmittance with time for different } \tau_2 \text{ values (a) at 460 nm, and (b-d) are the corresponding variations in normalized population density of different states with time.} \\

6.6 \text{ Variation of transmittance with time for different values of } \sigma_1 \text{ at pulse width of 120 fs and } I_0 = 4.5×10^{10} \text{ W/cm}^2. \\

6.8 \text{ Design of fs AOL gates.}