PREFACE

Many devices have been developed for simulation of cloud in the laboratory and counting the C.C.N. particle. In all these techniques the basic requirement is the production of supersaturation in the range actually exist in natural cloud and counting the C.C.N. particle. In thermal diffusion chamber only, a wide range of controllable supersaturation can be produced provided the transient and steady state behaviour of the chamber is known accurately. The instrument thus developed can be used to study the diurnal variation of C.C.N. concentration and also the nature of supersaturation spectra at the place of study. The trend of data of C.C.N. concentration at various supersaturation is usually fitted by the method of least square fitting of straight line in order to determine the exact relationship between the two parameters. The data obtained from the thermal diffusion chamber were processed at the computer centre of the Institute of Tropical Meteorology.

The author takes the opportunity of recording his indebtedness to the Supervisor of the thesis, Prof. Arun Kumar Sen, for his keen interest and necessary guidance. It is a pleasure to gratefully acknowledge the stimulating discussion with Mr. S. Mahalanobis, formerly attached to the Institute of Radio Physics and Electronics also with Mr. K. G. Vernekar, I.I.T.M. during the construction of thermal diffusion chamber. The author is also thankful to Sarbashri L. K. Sadani, Brijmohan and G. S. momin for providing different electronic equipments and other necessary accessories whenever they were needed during the course of work. His
thanks are due to the staff of workshop, Photo unit, drawing unit and I.B.M. 1620 computer of the Indian Institute of Tropical Meteorology for their help during the progress of the thesis, otherwise it may not be the light of the day.

SIBABRATA CHAUDHURI

INSTITUTE OF RADIO PHYSICS AND ELECTRONICS
CALCUTTA
INDIA.

30-6-86

SIBABRATA CHAUDHURI