List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fig 1</td>
<td>Location of Mudumalai Tiger Reserve at the trijunction of Tamil Nadu, Karnataka and Kerala in the Western Ghats.</td>
<td>42</td>
</tr>
<tr>
<td>Fig 2</td>
<td>Mudumalai Tiger Reserve, Tamil Nadu, showing administrative zones.</td>
<td>42</td>
</tr>
<tr>
<td>Fig 3a</td>
<td>Total annual rainfall pattern in Mudumalai Tiger Reserve, Tamil Nadu (January 2009 to December 2011).</td>
<td>44</td>
</tr>
<tr>
<td>Fig 3b</td>
<td>Annual temperature in Mudumalai Tiger Reserve, Tamil Nadu (2009-2011).</td>
<td>45</td>
</tr>
<tr>
<td>Fig. 4</td>
<td>Camera trap locations for capturing small carnivores in Mudumalai Tiger Reserve (2009-2011).</td>
<td>54</td>
</tr>
<tr>
<td>Fig. 5a</td>
<td>Camera trap photographs of jungle cat with individual identification markings on the body in Mudumalai Tiger Reserve. A male jungle cat identified as JL2 was photographed on Jagalikadav trail on 1 March 2010 at 5:00 am.</td>
<td>60</td>
</tr>
<tr>
<td>Fig. 5b</td>
<td>JL2 was recaptured on an elephant trail in the Moyar range on 8 March 2010 at 00:45 am.</td>
<td>61</td>
</tr>
<tr>
<td>Fig. 5c</td>
<td>A female jungle cat identified as JL11 was photographed on an elephant trail in the Moyar range on 16 March 2010 at 23:27 pm.</td>
<td>61</td>
</tr>
<tr>
<td>Fig 6</td>
<td>Increase in species richness with cumulative number of camera trap-nights in Mudumalai during 2010 and 2011.</td>
<td>62</td>
</tr>
</tbody>
</table>
Fig 7. Abundance (individuals/km2) from occupancy models for small carnivores in dry thorn (DT), deciduous (DEC) and semi-evergreen forest (SEM) in Mudumalai. Estimates were taken only for the dry season for comparison across species.

Fig 8a. The relationship between body weight (kg) and home range size (km2) of small carnivores in Mudumalai. Home range and body weight estimates were taken from available literature. Jungle cat and stripe-necked mongoose was excluded since their home range estimates are unavailable.

Fig 8b. Relationship between body weight (kg) and mean detection probability for small carnivores in Mudumalai.

Fig 8c. Relationship between body weight (kg) and mean site occupancy (as obtained from Table 6) for small carnivores in Mudumalai.

Fig 8d. Relationship between body weight (kg) and relative abundance index (captures/100 trap nights) for small carnivores in Mudumalai.

Fig 8e. Relationship between mean abundance (λ) and relative abundance index (captures/100 trap nights) for small carnivores in Mudumalai.

Fig. 10. Monthly fruit diversity recorded in Mudumalai Tiger Reserve (2009-2011).

Fig 11. Number of small cat faecal samples collected across months during the study period (2009-2011) in Mudumalai Tiger Reserve.

Fig 12. Cumulative dietary diversity indexed by the Shannon diversity index, for small cat against increasing number of faecal samples for the years 2009–2011 in Mudumalai Tiger Reserve.
Fig 13. Civet faecal samples collected on a monthly basis during the study period in Mudumalai Tiger Reserve (2009-2011).

Fig 14. Cumulative dietary diversity indexed by the Shannon diversity, for civet against increasing number of faecal samples in Mudumalai Tiger Reserve (2009–2011).

Fig 15. Mongoose faecal samples collected on a monthly basis during the study period in Mudumalai Tiger Reserve (2009-2011).

Fig 16. Cumulative dietary diversity indexed by the Shannon diversity index for mongoose against increasing number of faecal samples for the years 2009–2011 in Mudumalai Tiger Reserve.

Fig 17. Relative frequency occurrence of food items of small cat in the dry thorn and deciduous forests (2009-2011).

Fig 18. Monthly variation in the main food types ingested by small cat (2009-2011); a) overall b) dry thorn c) deciduous forests.

Fig 19. Variation in the relative frequency occurrence of food items of the civet in the dry thorn, deciduous and semi-evergreen forests (2009-2011).

Fig 20. Monthly variation in food items ingested by civet (2009-2011); a) overall b) dry thorn c) deciduous d) semi-evergreen forests.

Figure 21. Relative frequency occurrence of food items of the mongoose in dry thorn, deciduous and semi-evergreen forests.

Fig 22. Monthly variations in the main food types ingested by mongoose; a) overall b) dry thorn c) deciduous d) semi-evergreen forests.

Fig 23. Temporal variation in diet diversity a) and niche breadth b) of small cat in Mudumalai Tiger Reserve from 2009-2011.
Fig 24. Temporal variation in diet diversity a) and niche breadth b) of civet in Mudumalai Tiger Reserve from 2009-2011.

Fig 25. Temporal variation in diet diversity a) and niche breadth b) of mongoose in Mudumalai Tiger Reserve from 2009-2011.

Fig 26. Temporal changes in the diet of small cat in Mudumalai Tiger Reserve (2009-2011). a) overall b) dry thorn c) and deciduous forests.

Fig 27. Temporal changes in the diet of civet in Mudumalai Tiger Reserve (2009-2011) a) overall b) dry thorn c) deciduous and d) semi-evergreen forests.

Fig 28. Overall the percent availability of fruit biomass observed in faeces of the civet (circles) as compared to fruit biomass in the environment (squares) in Mudumalai Tiger Reserve (2009-2011).

Fig 29. Temporal changes in the diet of mongoose in Mudumalai Tiger Reserve (2009-2011) a) overall b) dry thorn c) deciduous and d) semi-evergreen forests.

Fig 30. Overall diet composition (relative frequency occurrence %) of small cat, civet and mongoose in Mudumalai Tiger Reserve (2009-2011).

Fig 31. Prey size categories selected by small cats, civet and mongooses (2009-2011).

Fig 32. Trophic niche breadth and niche overlap of small carnivores in Mudumalai Tiger Reserve (2009-2011).

Fig 33a. Consumption of major prey items by small cats in the dry season derived from Jacob’s index (2009-2011).
Fig 33b. Consumption of major prey items by small cats in the wet season derived from Jacob’s index (2009-2011).

Fig 34a. Consumption of major food items by civets in the dry season derived from Jacob’s index (2009-2011).

Fig 34b. Consumption of major food items by civets in the wet season derived from Jacob’s electivity index (2009-2011).

Fig 35a. Consumption of major prey items by mongoose in the dry season derived from Jacob’s index (2009-2011).

Fig 35b. Consumption of major prey items by mongoose in the wet season derived from Jacob’s index (2009-2011).

Fig 36a. Spatially unique localities of small cats in Mudumalai Tiger Reserve (2009-2011).

Fig 36b. Spatially unique localities of civets in Mudumalai Tiger Reserve (2009-2011).

Fig 36c. Spatially unique localities of mongooses in Mudumalai Tiger Reserve (2009-2011).

Fig 37. ROC curve of Sensitivity versus Specificity for the habitat model of jungle cat.

Fig 38. Jackknife analyses of individual predictor variables important in the development of the full model for jungle cat in relation to the overall model quality or the “regularized training gain.”

Fig 39. Graphical representation of the relationship between (a) ndvi_march, (b) aspect, (c) distance to water source, (d) elevation, (e) forest type, f) landcover type, g) annual precipitation of the warmest
quarter, h) ndvi_july i) topography wetness index, and jungle cat probability of presence (2009-2011).

Fig 40. Predicted distribution for jungle cat in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 41. ROC curve of Sensitivity versus Specificity for the habitat model of rusty-spotted cat.

Fig 42. Jackknife analyses of individual predictor variables important in the development of the full model for rusty-spotted cat in relation to the overall model quality or the “regularized training gain.”

Fig 43. Graphical representation of the relationship between (a) aspect, (b) elevation, c) landcover type, d) annual precipitation of the warmest quarter, e) annual precipitation of the coldest quarter f) topography wetness index, and rusty-spotted cat probability of presence (2009-2011).

Fig 44. Predicted distribution for rusty-spotted cat in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 45. ROC curve of Sensitivity versus Specificity for the habitat model of leopard cat.

Fig 46. Jackknife analyses of individual predictor variables important in the development of the full model for leopard cat in relation to the overall model quality or the “regularized training gain.”

Fig 47. Graphical representation of the relationship between (a) actual evapotranspiration, (b) elevation, c) forest type, d) landcover type, e) isothermality,
and leopard cat probability of presence (2009-2011).

Fig 48. Predicted distribution for leopard cat in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 49. ROC curve of Sensitivity versus Specificity for the habitat model of small Indian civet.

Fig 50. Jackknife analyses of individual predictor variables important in the development of the full model for small Indian civet in relation to the overall model quality or the “regularized training gain.”

Fig 51. Graphical representation of the relationship between (a) NDVI_March, (b) aspect, (c) elevation, (d) forest type, (e) landcover type f) annual precipitation of the coldest quarter g) slope, h) topography wetness index, and small Indian civet probability of presence (2009-2011).

Fig 52. Predicted distribution for small Indian civet in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 53. ROC curve of Sensitivity versus Specificity for the habitat model of common palm civet.

Fig 54. Jackknife analyses of individual predictor variables important in the development of the full model for common palm civet in relation to the overall model quality or the “regularized training gain.”

Fig 55. Graphical representation of the relationship between (a) precipitation of the warmest quarter, (b) AET, (c) forest type,
d) landcover type, e) elevation, f) NDVI_July, g) NDVI_June, h) topography wetness index and common palm civet probability of presence (2009-2011).

Fig 56. Predicted distribution for common palm civet in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 57. ROC curve of Sensitivity versus Specificity for the habitat model of brown palm civet.

Fig 58. Jackknife analyses of individual predictor variables important in the development of the full model for brown palm civet in relation to the overall model quality or the “regularized training gain.”

Fig 59. Graphical representation of the relationship between (a) NDVI (March), (b) actual evapotranspiration, c) aspect, d) elevation, e) annual precipitation of the warmest quarter, f) annual precipitation of the coldest quarter g) NDVI (June) and brown palm civet probability of presence (2009-2011).

Fig 60. Predicted distribution for brown palm civet in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011).

Fig 61. ROC curve of Sensitivity versus Specificity for the habitat model of stripe-necked mongoose.

Fig. 62. Jackknife analyses of individual predictor variables important in the development of the full model for stripe-necked mongoose in relation to the overall model quality or the “regularized training gain.”
Fig 63. Graphical representation of the relationship between (a) actual evapotranspiration, (b) aspect, (c) elevation, (d) forest type, (e) landcover type, (f) annual precipitation of the warmest quarter, (g) annual precipitation of the coldest quarter, (h) slope, (i) topography wetness index and stripe-necked mongoose probability of presence (2009-2011).

Fig 64. Predicted distribution for stripe-necked mongoose in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 65. ROC curve of Sensitivity versus Specificity for the habitat model of ruddy mongoose.

Fig 66. Jackknife analyses of individual predictor variables important in the development of the full model for ruddy mongoose in relation to the overall model quality or the “regularized training gain.”

Fig 67. Graphical representation of the relationship between (a) NDVI (March), (b) actual evapotranspiration, (c) aspect, (d) distance to water, (e) elevation, (f) forest type, (g) landcover type, (h) annual precipitation of the warmest quarter, (i) annual precipitation of the coldest quarter, (j) topography wetness index and ruddy mongoose probability of presence (2009-2011).

Fig 68. Predicted distribution for ruddy mongoose in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.

Fig 69. ROC curve of Sensitivity versus Specificity for the habitat model of grey mongoose.

Fig 70. Jackknife analyses of individual predictor variables important in the development of the full model for grey mongoose in relation to the
overall model quality or the “regularized training gain.”

Fig 71. Graphical representation of the relationship between (a) actual evapo-transpiration, (b) elevation, (c) landcover type, (d) annual precipitation of the warmest quarter (e) isothermality (f) ndvi (June) (g) topography wetness index and grey mongoose probability of presence (2009-2011).

Fig 72. Predicted distribution for grey mongoose in Mudumalai Tiger Reserve estimated by MaxEnt modeling (2009-2011). Potential areas are shown in grey shading with the white color indicating higher probabilities of occurrence.