LIST OF TABLES

1.1 High temperature thermoplastics used in fibre reinforced plastics 9
1.2 Engineering and commodity thermoplastics used in fibre reinforced plastics 10
1.3 List of commercial immiscible blends .. 22
2.1 Properties of polypropylene ... 102
2.2 Properties of LDPE ... 103
2.3 Properties of PET ... 103
2.4 Properties of compatibilizer ... 104
4.1 Static mechanical properties of PP, PET, neat blend and MFCs 145
4.2 Experimental and theoretical tensile strength, tensile modulus values obtained for in-situ composites .. 155
5.1 Values of tan δ maximum, E”maximum and T_{g} values from tan δ and E” plots for PP, neat blend and MFCs prepared at draw ratios 2, 5, 8, 10 .. 177
5.2 Experimental and theoretical storage moduli for the in-situ composites at 30°C and 50°C determined at 1 Hz 179
6.1 Thermal properties of PP phase in neat PP, neat blend(NB), microfibrillar blend and microfibrillar composites obtained from DSC studies ... 191
6.2 Thermal properties of PP phase in neat PP, as extruded blend, stretched blend and MFC prepared at draw ratio 5 199
7.1 Non-isothermal decomposition characteristics of PP, PET, NB, microfibrillar blends and microfibrillar composites in nitrogen 219
7.2 Activation energy for PP, PET, neat blend, microfibrillar blends and composites ... 227
8.1 Average, maximum and minimum diameters of PET spheres/fibres .. 239
9.1 Tensile properties of normal blends and MFCs based on LDPE / PET .. 248
9.2 Experimental and theoretical storage moduli for the LDPE/PET microfibrillar composites at 0°C and -30°C determined at 10 Hz 267
10.1 Tensile properties of compatibilized normal blends and MFCs prepared from LDPE/PET ... 285
10.2 Tensile and impact properties of LDPE/PET blends and microfibrillar composites prepared at 75/25 and 85/15 w/w% with 4 wt% compatibilizer ... 295
10.3 Activation energy for glass transition for blends and MFCs 309
11.1 Diffusion, Sorption, Permeability coefficients of LDPE, normal blends and microfibrillar composites at 30°C .. 321
11.2 Diffusion, Sorption, Permeability coefficients of LDPE, normal blends and microfibrillar composites at 50°C 326
11.3 Diffusion, Sorption, Permeability coefficients of LDPE, normal blends and microfibrillar composites at 70°C 329
11.4 n and k values for diffusion of xylene through LDPE, normal blends and MFCs ... 331
11.5 Non-isothermal decomposition characteristics of LDPE, PET, strands of normal blends, microfibrillar blends in nitrogen 335
11.6 Activation energy for degradation for LDPE, PET, NS85, NS75, MS85 and MS75 ... 340