CONTENTS

CHAPTER - 1
INTRODUCTION

1.1 General Introduction ... 1
1.2 Kinetic Studies ... 2
1.3 Kinetic Scheme .. 2
1.4 Chain Transfer .. 7
1.4a Transfer to solvents or other additives 10
1.5 Deviations in Normal Kinetics 10
1.5a Initiation step ... 11
1.5b Termination step .. 13
1.5c Propagation step ... 18
1.6 Polymerisation at High Conversion 22
1.7 Electro-initiated Polymerisation 22

CHAPTER - 2
LITERATURE REVIEW

2.1 Introduction .. 29
2.2 Electroinitiation in Aqueous Systems 29
2.2a Polymerisation of MMA 29
2.2b Polymerisation of Acrylamide 31
2.2c Miscellaneous Polymerisation system in aqueous media .. 34
2.3 Electroinitiation in Non-aqueous Systems 35
2.4 Electro-initiated Post-Polymerisation 39
CHAPTER - 3
OBJECT AND THE MAIN THEME
3.1 Object and the main theme of the present work ... 41

CHAPTER - 4
EXPERIMENTAL
4.1 Purification of Monomers ... 46
4.2 Purification of Solvents and Chemicals ... 46
4.3 Polymerisation Experiments ... 48
4.3a Acrylamide-Sodium Formate System ... 48
4.3b Bromatometric Determination of Acrylamide ... 49
4.3c Acrylamide-Tartaric Acid and MMA-Tartaric Acid Systems ... 49
4.3d MMA-Potassium Persulfate-Hydroquinone System ... 50
4.4a Determination of Molecular Weight ... 50
4.4b Molecular Weight Determination of PMMA ... 51

CHAPTER - 5
ELECTROCHEMICALLY INITIATED POLYMERISATION OF ACRYLAMIDE USING SODIUM FORMATE AS ELECTROLYTE
5.1 Introduction ... 56
5.2 Results and Discussion ... 57
5.2a Effect of Nitrogen on the Polymerisation Rate ... 58
CHAPTER 5

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.2b</td>
<td>Inhibition Period and Effect of Inhibitor</td>
<td>60</td>
</tr>
<tr>
<td>5.2c</td>
<td>Determination of Activation Energy</td>
<td>62</td>
</tr>
<tr>
<td>5.2d</td>
<td>Effects of Various Salts as Electrolytes</td>
<td>64</td>
</tr>
<tr>
<td>5.2e</td>
<td>Effect of Electrolyte Concentration</td>
<td>67</td>
</tr>
<tr>
<td>5.2f</td>
<td>Effect of Variation of Current on Polymerisation rate</td>
<td>69</td>
</tr>
<tr>
<td>5.2g</td>
<td>Dependence of Polymerisation rate on Monomer Concentration</td>
<td>71</td>
</tr>
<tr>
<td>5.2h</td>
<td>Dependence of Rate of Polymerisation on pH of the Medium</td>
<td>77</td>
</tr>
<tr>
<td>5.2i</td>
<td>Dependence of Rate of Polymerisation on Monomer Concentration</td>
<td>79</td>
</tr>
<tr>
<td>5.3</td>
<td>Kinetic Scheme</td>
<td>78</td>
</tr>
</tbody>
</table>

CHAPTER 6

ELECTROINITIATED POLYMERISATION OF ACRYLAMIDE AND METHYL METHACRYLATE IN PRESENCE OF TARTARIC ACID

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>81</td>
</tr>
<tr>
<td>6.2a</td>
<td>Effect of Nitrogen</td>
<td>82</td>
</tr>
<tr>
<td>6.2b</td>
<td>Effect of Electrolyte Concentration</td>
<td>82</td>
</tr>
<tr>
<td>6.2c</td>
<td>Effect of Hydroquinone</td>
<td>85</td>
</tr>
<tr>
<td>6.2d</td>
<td>Determination of Energy of Activation</td>
<td>86</td>
</tr>
<tr>
<td>6.2e</td>
<td>Dependence of Monomer Concentration on the Rate of Polymerisation of Acrylamide and Methylmethacrylate</td>
<td>87</td>
</tr>
<tr>
<td>6.2f</td>
<td>Effect of Current on the Rate of Polymerisation</td>
<td>89</td>
</tr>
<tr>
<td>6.3</td>
<td>Mechanism of Initiation</td>
<td>92</td>
</tr>
<tr>
<td>6.3a</td>
<td>Electrolyte</td>
<td>92</td>
</tr>
<tr>
<td>6.3b</td>
<td>Monomer</td>
<td>94</td>
</tr>
</tbody>
</table>
CHAPTER - 7

ELECTROINITIATED POLYMERISATION OF METHYL METHACRYLATE IN AQUEOUS MEDIUM USING POTASSIUM PERSULFATE AS THE ELECTROLYTE

7.1 Introduction ... 96
7.2a Effect of Oxygen ... 98
7.2b Effect of Hydroquinone ... 101
7.2c Effect of Temperature ... 103
7.2d Effect of Current ... 104
7.2e Effect of Electrolyte ... 106
7.2f Effect of Monomer ... 107

SUMMARY ... 110

REFERENCES ... 117