GENERAL REMARKS

The numbers given to the literature references, tables, figures and schemes have been made continuous separately in each part of the dissertation. For the sake of convenience the references have been compiled at end of each part.

Petroleum ether used had boiling point 60-80°. Extracts of products in organic solvents were generally washed with saturated NaCl solution and dried over anhydrous Na₂SO₄ in each case.

In all TLC experiments, silica gel were employed as adsorbent; spots were detected by staining with iodine vapour or spraying with Dragendorff's reagent and also by exposing to UV light. Silica gel (mesh 60-120) (BDH) was employed for column chromatographic separation analyses. All chromatographic experiments were monitored by micro-TLC.

All organic compounds were crystallised from chloroform-petroleum ether (unless otherwise mentioned). The melting points are uncorrected and the analytical samples were routinely dried in vacuo over P₂O₅ at 61° for 8 hours.

The UV spectra were measured in aldehyde-free ethanol solution on a Varian 634H spectrophotometer. The IR spectra were examined in KBr pellets on a Beckman IR 20 spectrophotometer. The
PMR spectra were measured in CDCl₃ (unless otherwise mentioned) using TMS as internal standard on Varian CFT-20, Varian A60Q and Varian XL100 spectrophotometers operating at 80, 60, & 100 MHz respectively. The ¹³C NMR spectra were taken in CDCl₃ or d₅-DMSO on Varian CFT-20, Varian XL-100-15 and JEOL PSFT 100 spectrophotometers operating at 20.1, 25.2 and 25.2 MHz respectively. The chemical shifts were measured in δ(ppm) units. The rotation were measured on Perkin Elmer 241 M electronic polarimeter in chloroform solutions. The Mass spectra were taken in JMS D300 Jeol machine.