LIST OF FIGURES

Fig. 2.1 Equilibrium Phase Diagram of Copper Tin System
Fig. 3.1 LBA plano-convex ingot
Fig. 3.2 Bun-shaped ingot Lothal
Fig. 3.3 Bun shaped ingot Mohenjodaro
Fig. 3.4 Bun-shaped ingot from Mohenjodaro.
Fig. 3.5 Bun-shaped ingot, Agiabani
Fig. 3.6 Bun-shaped ingot, Gungeria
Fig. 3.7 Microstructure of Cu lump
Fig. 3.8 Microstructure of Cu lump
Fig. 3.9 Section of corroded high-tin bronze bowl
Fig. 3.10 Section of high-tin bronze bowl the
Fig. 3.11 SEM micrograph of tin-bronze axe
Fig. 3.12 High tin bronze from Korea
Fig. 3.13 Peritectic compositions in historical high tin bronze specimens from Korea
Fig. 3.14 Copper bronze objects From Mohenjodaro
Fig. 3.15 Some of the copper bronze object from Harappa
Fig. 3.16 Microstructure of copper wire Chanhudaro
Fig. 3.17 Celt from Harappa
Fig. 3.18 Photomicrograph of same celt
Fig. 3.19 Daimabad Bronze: an excuisite chariot
Fig. 3.20 Microstructure low tin bronze of Chirand
Fig. 3.21 Microstructure of bangle from Mangalkote
Fig. 3.22 Microstructure of bronze wire from Bahiri
Fig. 3.23 Distribution of alloying elements in low tin bronze of Taxila
Fig. 3.24 Distribution of Cu-Sn-As in high tin bronze of Taxila
Fig. 3.25 Knobbed vessel from Agiabir.
Fig. 3.26 Microstructure of the knobbed vessel of Agiabir
Fig. 3.27 Knobbed vessel from Wari-Bateswar
Fig. 3.28 Microstructure of the vessel of Wari-Bateswar
Fig. 3.29 Mahasthan Bronze Lamp
Fig. 3.30 Mahasthan Mirror
Fig. 3.31 Microstructure showing α phase and intermetallic brittle phase
Fig. 3.32 Microstructure showing α phase in lighter and β phase in darker
Fig. 3.33 Microstructure showing twins revealed in few α phase of South India
Fig. 3.34 Hot worked and quenched specimen revealed martensitic structure
Fig. 3.35 Photomicrograph of delta high-tin bronze mirror
Fig. 3.36 Cu-Sn ratios in South Indian bronzes
Fig. 3.37 Microstructure of a Cu-22 Sn cast material
Fig. 3.38 Microstructure of a Cu-22 Sn forged material
Fig. 3.39 Microstructure of a Cu-22 Sn hot forged material before quenching
Fig. 3.40 Microstructure of a Cu-22 Sn hot forged after quenching
Fig. 3.41 Map of West Bengal showing copper hoards sites
Fig. 3.42 Ancient copper smelting furnace from Tamajuri
Fig. 3.43 Section of Copper smelting furnace of Tamajuri
Fig. 3.44 Equilibrium phase diagram of Cu-Sn System
Fig. 3.45 Cu-Sn Phase diagram (Saunders and Miodownik)
Fig. 3.46 Density of copper with respect to temperature (after West)
Fig. 3.47 Variation in the Density of Copper with Temperature
Fig. 3.48 Hardness versus Sn content (0-28%)
Fig. 3.49 Hardness as cast and quenched
Fig. 3.50 Solubility limits to copper with other elements
Fig. 3.51 Viscosity curve of liquid Cu-Sn alloy
Fig. 3.52 Viscosity of Cu-23% Sn at different temperature
Fig. 3.53 Influence temperature on the viscosity of liquid Cu
Fig. 3.54 Tin content compared surface tension and flow
Fig. 3.55 Viscosity of liquid Cu-Zn alloys at 50°C tension and flow
Fig. 3.56 Tin content compared surface 100°C over melting points
Fig. 3.57 Comparison of viscosities of liquid
Fig. 3.58 Surface tension isotherms of liquid Cu-Sn
Fig. 3.59 Portion of Cu-O equilibrium Diagram (Ellingham Diagram)
Fig. 3.60 Freezing Range for Cu-Sn Bronzes
Fig. 3.61 The peritectic transformation during continuous cooling in a system
Fig. 3.62 The acicular structure produced by quenching the 23.6 pct. Sn-bronze
Fig. 3.63 Primary Cu₅Cd₈ crystals are white, the dark matrix is Cd
Fig. 3.64 Fracture of Cu-Sn alloy specimens in different morphological characteristics
Fig. 3.65 Portion of Cu-O Equilibrium Diagram
Fig. 3.66 Hydrogen content in Cu-Sn alloys
Fig. 3.67 Solubility of Hydrogen at normal pressure and temperature in copper
Fig 3.68 Illustrations of common inclusion shapes and distributions found in steel
Fig. 3.69 Short freezing range in Cu-Sn alloys about 200 °C
Fig. 3.70 Force F and its components F_n and F_t
Fig. 3.71 Stress components in 3 dimensions
Fig. 3.72 Possible stress states in three dimensions.
Fig. 3.73 Possible stress states in three dimensions.
Fig. 3.74 Microstructure of Corroded high tin bronze specimens
Fig. 3.75 Basics of Hot Working connected with high and low SFE
Fig. 4.1 Scanning Electron Microscope JEOL JSM-6360
Fig. 4.2 Transmission Electron Microscope
Fig. 4.3 Ultima III XRD Machine
Fig. 5.1.1 Location of Tilpi, in West Bengal
Fig. 5.1.1A Excavation at Tilpi, showing factory site.
Fig. 5.1.2 Analyzed objects recovered at Tilpi
Fig. 5.1.3 The external surface of the crucible
Fig. 5.1.4 Crucible as received in excavation.
Fig. 5.1.5 Reconstructed crucible showing the ingot.
Fig. 5.1.6 Constitution obtained in EPMA, showing compositions of slag
Fig. 5.1.7 Ingot sample as received in excavation, 35 mm x 30 mm x 8 mm
Fig. 5.1.8 The macrostructure of metal ingot
Fig. 5.1.9 Microstructure at the central region of cast ingot
Fig. 5.1.10 Thermal explanation of mixed structures in castings
Fig. 5.1.11 A primary dendrite has been selected for micro – analysis by SEM EDX
Fig. 5.1.12 Compositions of the cross section of a primary dendrite
Fig. 5.1.13 A part of Cu-Sn phase diagram, showing the relevant portion
Fig. 5.1.14 Schematic mode of freezing of short freezing range alloys
Fig. 5.1.15 Working stress in micro pores.
Fig. 5.1.16 Freezing Range for alloys due to addition of Sn to Cu
Fig. 5.1.17 Microstructure at a last-to-freeze region.
Fig. 5.1.18 The distribution of elements Cu and Sn
Fig. 5.1.19 Fe-Sn Phase diagram
Fig. 5.1.20 The microstructure holds a special dendrite
Fig. 5.1.21 XRD Pattern of the Bell Metal ingot from Tilpi
Fig. 5.1.21A XRD Pattern of the Bell Metal ingot
Fig. 5.1.21B XRD Pattern of the Bell Metal ingot from Tilpi
Fig. 5.1.22 The DSC record of the high tin bronze ingot specimen
Fig. 5.2.1 Location of Gajole, in West Bengal
Fig. 5.2.2 The Bell Metal recovered from Gajole.
Fig. 5.2.3 The PIXE-gram for forged bowl
Fig. 5.2.4 The microstructure shows the progression
Fig. 5.2.5 The micrograph of the forged specimen
Fig. 5.2.6 The Microstructure of bowl at surface
Fig. 5.2.7 Microstructure of bowl at cross section
Fig. 5.2.8 The microstructure indicates predominantly β-phase
Fig. 5.2.9 The microstructure of high tin bronze
Fig. 5.2.10 An unusual large grain of β'-Cu-Sn phase
Fig. 5.2.11 Blocky grain with sub-grain formation
Fig. 5.2.12 The SEM structure of β'-Cu-Sn phase
Fig. 5.2.13 SEM of forged high-tin bronze or Bell metal
Fig. 5.2.14 TEM-EDX of composition of bowl specimen
Fig. 5.2.15 Martensite laths at 12KX
Fig. 5.2.16 Martensite laths at 25X
Fig. 5.2.17 Microstructure highlights the Basket-wisps structure
Fig. 5.2.18 The contents and distribution of tin
Fig. 5.2.19 Distribution of Cu-Sn-Fe
Fig. 5.2.20 Microstructure of the Bell Metal specimen
Fig. 5.2.21 Banding of second phase- β', in bronze
Fig. 5.2.22 X-Ray diffractogram of Bell Metal sample
Fig. 5.2.23 X-Ray diffractogram of the bowl sample
Fig. 5.2.24 X-Ray diffractogram of bowl sample
Fig. 5.2.25 X-Ray diffractogram of the forged bowl sample.
Fig. 5.2.26 The Neutron diffractogram
Fig. 5.2.27 The Neutron diffractogram
Fig. 5.2.28 Pole figure of high-tin bronze sample
Fig. 5.2.29 The stress analysis of Bell Metal specimen
Fig. 5.2.30 a) Data for DTA, and (b) Data for TGA
Fig. 5.2.31 DSC record of the high tin or Bell Metal
Fig. 5.2.32 Rhines explanation.
Fig. 5.2.33 Portion of Cu-Sn Diagram
Fig. 5.3.1 Bun Shaped Copper Ingot: Aguibani.
Fig. 5.3.2 Equiaxed grain structure with random distribution of second phase
Fig. 5.3.3 The tool bar indicates 20µm) and
Fig. 5.3.4 The tool bar indicates 100µm) – showing different types of inclusions
Fig. 5.3.5 SEM microstructure at 75X showing shrinkage cavity.
Fig. 5.3.6 SEM microstructure at 200X.
Fig. 5.3.7 SEM microstructure at 200X showing shrinkage cavity at other location
Fig. 5.3.8 SEM micrograph showing irregular grey Cu-Se Sulphide inclusion
Fig. 5.3.9 Total composition as revealed in SEM-EDX
Fig. 5.3.10 The micro hardness readings Aguibani Copper Hoard
Fig. 5.3.11 Bar-Celt, Khuntitoli
Fig. 5.3.12 Unetched macrostructure of Bar-celt indicating pits and blowholes
Fig. 5.3.13 Unetched microstructure of bar-celt revealed three types of inclusions.
Fig. 5.3.14 Unetched microstructure of bar-celt
Fig. 5.3.15 Partially annealed dendritic pattern resembling cast structure
Fig. 5.3.16 Preferential segregation of the second phase particles
Fig. 5.3.17 Rare presence of Bi inclusion in white round phase
Fig. 5.3.18 This is enlarged view of Fig. 5.3.13.
Fig. 5.3.19 SEM Microstructure
Fig. 5.3.20 Presence of arsenides.
Fig. 5.3.21 Cast dendritic structure with arsenide
Fig. 5.3.22 This is a region where the segregation of inclusions is more
Fig. 5.3.23 The EDX value at matrix showing pure copper
Fig. 5.3.24 The EDX value at another region pure copper
Fig. 5.3.25 with usual micro - hardness readings on the structure .
Fig. 5.3.26 Micro hardness markings are on the structures.
Fig. 5.3.27 Double-ended Axe
Fig. 5.3.28 Different types of inclusions in SEM EDX
Fig. 5.3.29 SEM EDX values of Axe
Fig. 5.3.30 SEM EDX values of Axe
Fig. 5.3.31 SEM EDX values of Axe
Fig. 5.3.32 X-Ray diffractogram of Axe
Fig. 5.3.33 A portion of As-Cu Diagram
Fig. 5.3.34 Optical microstructures of the specimen 50X
Fig. 5.3.35 Optical microstructures of the specimen 100X
Fig. 5.3.36 Optical microstructures of the specimen at 200X
Fig. 5.3.37 SEM microstructure at 100X
Fig. 5.3.38 SEM microstructure at 200X
Fig. 5.3.39 SEM microstructure at 500X
Fig. 5.3.40 SEM microstructure at 1000X
Fig. 5.3.41 Diffractogram of the copper hoard specimen
Fig. 6.1 Experimentation at Khagra
Fig. 6.2 Processing of casting, forging and thermomechanical treatment
Fig. 6.3 Cast forging stock for kitchen spoon a
Fig. 6.3 Cast forging stock for kitchen spoon b
Fig. 6.3.1 Cast forging stock for kitchen spoon
Fig. 6.3.2 The optical microstructure of cast forging stock at 600X
Fig. 6.3.3 SEM microstructure of cast forging stock at 400X
Fig. 6.3.4 X- Ray Diffractogram of Cast Bell Metal Sample
Fig. 6.3.5 X- Ray Diffractogram of Cast Bell Metal Sample with some modification.
Fig. 6.3.6 Pole Figures in cast Bell Metal Sample
Fig. 6.3.7 EBSD studies on analysed cast specimen.
Fig. 6.3.8 TEM of the cast specimen at 12KX
Fig. 6.3.9 TEM of the cast specimen at another location at 12KX
Fig. 6.3.10 TEM of the cast specimen at 40KX
Fig. 6.3.11 TEM of the cast specimen at 40KX
Fig. 6.3.12 TEM of the cast specimen at 12KX
Fig. 6.3.13 TEM EDX of the cast specimen
Fig. 6.3.14 Finished Spoon after forging, quenching and scraping.
Fig. 6.3.15 PIXE-gram of Finished Spoon
Fig. 6.3.16 The microstructure of bronze after forged and heat treated
Fig. 6.3.17 TEM-EDX of Khagra forged specimen at 12KX
Fig. 6.3.18 TEM-EDX of Khagra forged specimen at 25KX
Fig. 6.3.19 TEM-EDX of Khagra forged specimen at 50KX
Fig. 6.3.20 TEM-EDX of forged specimen
Fig. 6.3.21 EBSD Observation of Forged Bell Metal Specimen.
Fig. 6.3.22 Pole figure of the forged specimen
Fig. 6.3.23 Residual Stress in forged Bell Metal Specimen
Fig. 6.3.24 Stress measurement in forged spoon showing intensity.
Fig. 6.3.25 Stress measurement
Fig. 6.3.26 XRD of the forged Bell Metal piece
Fig. 6.3.27 DSC record of the experimental Bell Metal forged specimen
Fig. 8.1 Pb Isotope ratio in three specimens
Fig. 8.2 Crucible from Tilpi
Fig. 8.3 Dimensions of Crucible
Fig. 8.4 Surface with husk impression.
Fig. 8.5 Photomicrograph of thin section in XPL
Fig. 8.6 Photomicrograph of the thin-section in PPL
Fig. 8.7 Photomicrograph of the thin-section in PPL
Fig. 8.8 Photomicrograph of the thin-section in PPL
Fig. 8.9 Slag specimen after brushing clay
Fig. 8.10 Microstructure showing wustite
Fig. 8.11 2 theta values 0 - 55° range
Fig. 8.12 2 theta value 57-100° range
Fig. 8.13 Native copper
Fig. 8.14 Malachite and Azurite ore
Fig. 8.15 Chalcopyrite ore
Fig. 8.16 Chalcocite ore
Fig. 8.17 Cassiterite ore
Fig. 8.18 Singhbhum copper belt and its extension
Fig. 8.19 In-depth Geological map of Singhbhum
Fig. 8.20 Mineral phases in chalcopyrite (Pal et al. 2007).
Fig. 8.21 Activity of Cu-Sn at 1400K