CONTENTS

<table>
<thead>
<tr>
<th>Chapter Number</th>
<th>Content of the Chapters</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 Scaling</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.2 Benefits of scaling</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.3 Short channel effects: Result of aggressive scaling</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1.4 Motivation for present research</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1.5 Scope of work</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>1.6 Thesis organization</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>18</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>Basic Mos physics and short channel effects(SCEs) and their remedies: A review</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>2.1 Introduction</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>2.2 Evolution of Very large scale integration(VLSI)</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Early computers</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Transistors and integrated circuits</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>2.2.3 Invention of the Integrated Circuit(IC)</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.2.4 MOS Transistor production</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>2.2.5 Evolution from SSI to VLSI</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>2.3 Technology trends in VLSI</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>2.3.1 Important features of MOSFET</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>2.4 Introduction to MOS transistor</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.5 Threshold voltage of MOSFET</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>2.6 Accumulation of holes</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>2.7 Depletion</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.8 Inversion</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>2.9 Surface potential</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>2.10 Oxide charges</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>2.11 Interface traps</td>
<td>43</td>
</tr>
</tbody>
</table>
2.12 Flat-band voltage 44
2.13 Expression of threshold voltage 44
2.14 Depletion MOSFET 45
2.15 Trans-conductance 47
2.16 Channel length modulation 48
2.17 Substrate bias effect 52
2.18 Mosfet capacitance 53
 2.18.1 Overlap capacitance 54
 2.18.2 Channel capacitance 55
 2.18.3 Junction capacitances 56
 2.18.4 Different MOS capacitors together 57
 2.18.5 Summary of MOS capacitances 58
 2.18.6 Interconnect capacitances 60
2.19 Complementary MOS 60
 2.19.1 CMOS fabrication process flow 62
 2.19.2 Resistor using CMOS IC 63
 2.19.3 Capacitor using CMOS IC 64
 2.19.4 Diode using CMOS IC 66
 2.19.5 Application of strained Silicon MOSFET in CMOS Integrated Circuit 67
2.20 Moore’s law 68
2.21 Introduction to scaling 69
 2.21.1 Constant field scaling 69
 2.21.2 Constant voltage scaling 70
2.22 ITRS Roadmap for semiconductors 70
2.23 Gate oxide scaling 73
2.24 Gate length scaling 75
2.25 Different groups of MOSFETs 76
2.26 Short channel effects of MOSFET 77
 2.26.1 Reduction of the effective threshold voltage 78
 2.26.2 Hot electron effects 80
2.26.3 Avalanche breakdown and parasitic bipolar action 82
2.26.4 DIBL(Drain induced barrier lowering) 83
2.26.5 Velocity saturation in MOSFET 84
2.26.6 Mobility degradation 85
2.27 VLSI device structures: gate stack and gate material 87
 2.27.1 Source-drain structures 87
 2.27.2 Channel doping structures 89
 2.27.3 Channel and gate engineering techniques 90
 2.27.3.1 LAC MOS transistors 90
 2.27.3.2 Double Halo MOS transistor 90
 2.27.3.3 DMG MOS transistor 91
2.28 Introduction to SOI MOSFET 91
2.29 Limiting factors for the scaling of Mosfet beyond 100 nm 93
2.30 Summary of downsizing of MOSFET 94
 References 98

Chapter 3 Study of subthreshold surface potential of short
 channel,Double halo,Single Halo Dual Material
 Gate(SHDMG) and Double Halo Dual Material Gate
 MOSFET (DHDMG) with inner fringing field
 3.1 Introduction 101
 3.2 Study of surface potential for short channel MOSFET 103
 3.3 Study of surface potential for uniform Double Halo Mosfet 114
 3.4 Study of surface potential of uniformly doped SHDMG
 and DHDMG Mosfet with inner fringing fields 118
 3.5 Results 130
 3.6 Summary 147
 References 147

Chapter 4 Study and comparison of characteristic parameters of
 asymmetric halo, uniformly doped Single Halo Dual
 Material Gate, Double Halo Dual Material Gate and
 Double Gate MOSFETs 149
4.1 Introduction 150
4.2 Surface potential of asymmetric halo 151
 4.2.1 Threshold voltage and drain current model of asymmetric halo and uniformly doped DHDMG 156
 4.2.2 Subthreshold surface potential of uniformly doped DHDMG 157
 4.2.3 Surface potential, threshold voltage and drift-diffusion theory based drain current model of uniformly doped SHDMG 160
4.3 Simulation results and comparison 161
4.4 Summary 172
 References 172

Chapter 5 Quasi-Fermi potential based drain current, threshold voltage and surface potential model for Gaussian and linearly doped DHDMG Mosfet and its applications 175
 5.1 Introduction 176
 5.2 Surface potential of linear profile based DHDMG and SHDMG MOSFETs 177
 5.3 Quasi-Fermi potential based drain current model of linear DHDMG and SHDMG MOSFETs 183
 5.4 Study of characteristic parameters of Gaussian pocket doping profile based DHDMG MOSFETs 185
 5.5 Results and discussions 187
 5.6 Conclusion 200
 References 201

Chapter 6 Thermal and Flicker noise for Double Gate MOSFET 202
 6.1 Introduction 203
 6.2 Compact analytical noise modeling 205
 6.2.1 Thermal noise prior to velocity saturation 205
 6.2.2 Flicker noise prior to velocity saturation 208
 6.3 Results 211
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Conclusion</td>
<td>214</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>214</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion and future research prospects</td>
<td>218</td>
</tr>
<tr>
<td>7.1</td>
<td>Conclusion</td>
<td>219</td>
</tr>
<tr>
<td>7.2</td>
<td>Future Research Prospects</td>
<td>222</td>
</tr>
</tbody>
</table>