LIST OF TABLES

Table		Page
1.	Heavy metals in Industrial effluents.	129
2.	Physico chemical characteristics of water	130
3.	Results of Bioassaytest. Percent mortality observed in H. fossilis due to different concentrations of cadmium sulphate in different exposure durations.	131
4.	LC50 values of cadmium sulphate to H. fossilis and lethal threshold concentration	132
5.	Analysis of varience for mortality of H.fossilis in different concentrations of cadmium sulphate and different exposure durations	132
6.	Results of Bioassay test. Percent mortality observed in C. mrigala due to different concentrations of mercuric chloride in different exposure durations.	133
7.	LC50 values of mercuric chloride to C. mrigala and lethal threshold concentration.	134
8.	Analysis of varience for mortality of C. mrigala in different concentrations of mercuric chloride and different exposure durations.	134
9.	Results of Bioassay test. Percent mortality observed in H. fossilis due to different concentrations of nickel sulphate in different exposure duration.	135
10.	LC50 values of nickel sulphate to $\mathbf{H.}$ fossilis and lethal threshold concentration .	136
11.	Analysis of varience for mortality of H.fossilis in different concentrations of nickel sulphate and different exposure durations.	136
12.	Changes observed in the rate of opercular movement per minute of H. fossilis due to different concentrations of cadmium sulphate and different exposure durations.	137
13.	Analysis of varience for opercular movements per minute of H. fossilis in different concentrations of cadmium sulphate and different exposure durations.	137
14.	Changes observed in the rate of opercular movement per minute of C. mrigala in different concentrations of mercuric chloride and different exposure durations.	138

15	Analysis of varience for opercular movements per minute of C.mrigala in different concentrations of mercuric chloride and different exposure durations.	138
16.	Changes observed in the rate of opercular movements per minute of H. fossilis in different concentrations of nickel sulphate and different exposure durations.	139
17.	Analysis of varience for opercular movements per minute of H. fossilis in different concentrations of nickel sulphate and different exposure durations.	139
18.	Changes observed in growth (weight & length) of H. fossilis in different concentrations of cadmium sulphate in 720 hrs. exposure.	140
19.	Change observed in growth (weight and length) of C.mrigala in different concentrations of mercuric chloride in 480 hrs. exposure.	141
20.	Change observed in growth (weight and length) of H. fossilis in different concentrations of nickel sulphate in 720 hrs. exposure.	142
21.	Accumulation of cadmium (%) in Gills of H. fossilis in different concentrations of cadmium sulphate and different exposure durations.	143
22.	Accumulation of cadmium (%) in liver of H. fossilis in different concentrations of cadmium sulphate and different exposure durations.	143
23.	Accumulation of cadmium (%) in kidney of H.fossilis in different concentrations of cadmium sulphate and different exposure durations.	144
24.	Accumulation of mercury (%) in Gills of C.mrigala in different concentrations of mercuric chlordie and different exposure durations.	144
25.	Accumulation of mercury (%) in liver of C.mrigala in different concentrations of mercuric chloride and different exposure durations.	145
26.	Accumulation of mercury (%) in kidney of C.mrigala in different concentrations of mercuric chloride and different exposure durations.	145
27.	Accumulation of nickel (%) in gills of H.fossilis in different concentrations of nickel sulphate and different exposure durations.	1 4 6
28.	Analysis of varience for accumulation of nickel in gills of H.fossilis in different concentrations of nickel sulphate and different exposure durations.	146

29.	Accumulation of nickel (%) in liver of H.fossilis in different concentrations of nickel sulphate and different exposure durations.	147
30.	Analysis of varience for accumulation of nickel in liver of H.fossilis in different concentrations of nickel sulphate and different exposure durations.	147
31.	Accumulation of nickel (%) in kidney of H.fossilis in different cocentrations of nickel sulphate and different exposure durations.	148

0.....0.....0