Chapter 4

t-Pebbling the Product of trees

The t-pebbling number, $f_t(G)$, of a connected graph G, is the smallest positive integer such that from every placement of $f_t(G)$ pebbles, t pebbles can be moved to a specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. We study the t-pebbling number of the product of trees.

4.1 Known Results

We find the following definitions, Example 4.1.4, and Theorem 4.1.5 in [32].

Definition 4.1.1 (Path-partition of a rooted tree):
Let T be a tree and v be a vertex of T. Let T_v be the rooted tree obtained from T by directing all edges towards v, which becomes the root. For a rooted tree U, we shall call a vertex v of U a leaf it is of indegree 0. We shall call v, a parent of w if there is a directed edge from w to v, and an ancestor of w if there is a directed path from w to v. We call v, a vertex of level n if the directed path
from v to the root has n edges; the height of a tree is the maximum level of its vertices. A path-partition of a rooted tree U is a partition of the edges of U such that each set of edges in the partition forms a directed path.

Definition 4.1.2 (Maximum Path-partition of a rooted tree):
Path-partitions of a rooted tree U with height h can be formed in the following way. First we consider the subtree U^1 of U induced by all leaves of level h and their ancestors and construct a path-partition P^1 of U^1 such that every path in P^1 touches a leaf. Then we let U^{11} be the subtree of U induced by all leaves of level h or $h - 1$ and their ancestors and extend P^1 to a path-partition P^{11} of U^{11} by adding paths, which touch the level $h - 1$ leaves of U. We continue in this manner until we have a path-partition P of all of U. A path-partition constructed in this way is called maximum.

Definition 4.1.3 (Path-size sequence):
The path-size sequence of a path-partition $\{P_1, P_2, \ldots, P_n\}$ is an n-tuple (a_1, a_2, \ldots, a_n), where a_j is the length of P_j (That is, the number of edges in it).

Example 4.1.4:
Let us construct a maximum path-partition of the tree U in Figure 4.1. We start with the subtree U^1 of U induced by the vertex i, the unique vertex of U of level 4, and its ancestors b, e, f and h. There is a unique path-partition of U^1 such that every path touches a leaf, namely the path-partition with just one path, $\{ib, be, ef, fh\}$. Now we extend this path-partition to a path-partition of the subtree of U induced by the set $\{a, e, i, b, f, h\}$ of all vertices of level 3 or 4 and their ancestors. This produces the path-partition $\{ae\}, \{ib, be,$
Another extension gives us \{\{cg, gh\}, \{ae\}, \{ib, be, ef, fh\}\}, and another extension gives us the maximum path-partition of \(U\), namely \{\{cg, gh\}, \{ae\}, \{ib, be, ef, fh\}, \{dh\}\}. In this case, the maximum path-partition is unique, but this is not always the case. For example, if the vertex \(i\) and the edge \(ib\) were removed from \(U\), \(U\) would have two maximum path-partitions \{\{ae, ef, fh\}, \{be\}, \{cg, gh\}, \{dh\}\} and \{\{be, ef, fh\}, \{ae\}, \{cg, gh\}, \{dh\}\}.

![A rooted tree.](image)

Theorem 4.1.5 ([32]). Let \(U\) be a rooted tree and \(v\) be the root of \(U\). If the path-size sequence of some maximum path-partition for \(U\) is \((a_1, a_2, \ldots, a_n)\), then \(f(v, U) = \sum_{i=1}^{n} 2^{a_i} - n + 1\).

We find Theorem 4.1.6 in [30].

Theorem 4.1.6. Let \(U\) be a rooted tree and \(v\) be the root of \(U\). Let
(a_1, a_2, \ldots, a_n), \text{ be the path-size sequence for some maximum path-partition for } U. \text{ Without loss of generality } a_1 \text{ can be taken to be } h \text{ where } h \text{ is the height of the tree. Then}

\[f_t(v, U) = t2^h + \sum_{i=2}^{n} 2^{a_i} - n + 1. \]

We find Definition 4.1.7 in [9].

Definition 4.1.7:

Given a pebbling of G, a transmitting subgraph of G is a path \(x_0, x_1, \ldots, x_k \) such that there are at least two pebbles on \(x_0 \) and at least one pebble on each of the other vertices in the path, except possibly \(x_k \). In this case, we can transmit a pebble from \(x_0 \) to \(x_k \).

The following theorem of [3] is used here.

Theorem 4.1.8 ([3]). *A Tree satisfies the 2-pebbling property.*

Definition 3.3.4 discusses the odd 2t-pebbling property of the graph as a whole. We see the odd 2t-pebbling property of a vertex as follows: we say that a vertex \(v \) in a graph \(G \) satisfies the odd 2t-pebbling property if we can put 2t pebbles on \(v \) using pebbling moves from any arrangement of pebbles with at least 2\(f_t(G) - r + 1 \) pebbles, where \(r \) is the number of vertices in the arrangement with an odd number of pebbles.

We will now prove that a tree satisfies the odd 2t-pebbling property.

Theorem 4.1.9. *A tree satisfies the odd 2t-pebbling property.*
Proof. Let T be a tree and v be a vertex of T. Let U be the rooted tree obtained from T by directing all edges towards v, which becomes the root.

Let (a_1, a_2, \ldots, a_n) be the path-size sequence for some maximum path-partition for U. Without loss of generality a_1 can be taken to be h where h is the height of the tree.

Then by Theorem 4.1.6,

$$f_t(v, U) = t2^h + \sum_{i=2}^{n} 2^{a_i} - n + 1$$

Consider a configuration of $2f_t(v, U) - q + 1$ pebbles where q is the number of vertices with an odd number of pebbles. We use induction on t to prove that v satisfies the odd $2t$-pebbling property. For $t = 1$, the result is true by Theorem 4.1.8. For $t > 1$, the number of pebbles on the tree will be at least

$$2^{h+2} + \sum_{i=2}^{n} 2^{a_i+1} - 2n + 3 - q = 2f_{t-1}(v, U) - q + 1 + 2^{h+1}$$

where q is the number of vertices with an odd number of pebbles. Let p be the number of pebbles on U. We claim that there will be at least one P_i with at least 2^{a_i+1} pebbles. Otherwise, the total number of pebbles placed on T will be at most

$$2^{h+1} + \sum_{i=2}^{n} 2^{a_i+1} - n.$$

Then,

$$2f_t(v, U) + 1 \leq p + q \leq 2^{h+1} + \sum_{i=2}^{n} 2^{a_i+1} + q - n$$

That is, $t2^{h+1} + \sum_{i=2}^{n} 2^{a_i+1} - 2n + 2 + 1 \leq 2^{h+1} + \sum_{i=2}^{n} 2^{a_i+1} + q - n$.

That is,

\[(t - 1)2^{h+1} - 2n + 3 \leq q - n.\]

That is,

\[(t - 1)2^{h+1} + 3 \leq q + n.\]

That is,

\[(t - 1)2^{h+1} + 3 \leq 2|V(U)| \quad \text{since} \quad n \leq |V(U)| \quad \text{and} \quad q \leq |V(U)|.\]

That is,

\[(t - 1)2^{h} + (3/2) \leq |V(U)| \quad \text{for all} \quad t > 1.\]

This is a contradiction.

So we can put two pebbles on \(v\) using \(2^{n+1}\) pebbles lying on \(P_i\). So at most \(2^{h+1}\) pebbles will be used to put two pebbles on \(v\). Then the remaining number of pebbles on \(U\) will be at least \(2f_{t-1}(v, U) - q + 1\) where \(q\) is the number of vertices with an odd number of pebbles. By induction, these pebbles would suffice to put \(2(t - 1)\) additional pebbles on \(v\).

As \(v\) is arbitrary, every vertex in \(T\) satisfies the odd \(2t\)-pebbling property.

Hence \(T\) satisfies the odd \(2t\)-pebbling property.

\[\square\]

4.2 \(t\)-pebbling the product of some graphs

We now discuss some results on the \(t\)-pebbling number of direct product of two graphs.

Conjecture 3.4.3 discusses the \(t\)-pebbling number of the graph as a whole. To discuss the \(t\)-pebbling number of a specific vertex, we state Conjecture 4.2.1 which is a stronger form of Conjecture 3.4.3.

Conjecture 4.2.1:

The \(t\)-pebbling number of every vertex \((v, w)\) in \(G \times H\) satisfies \(f_t((v, w), G \times H) \leq f(v, G)f_t(w, H).\)

\[\square\]

We will now show that \(P_2 \times G\) satisfies Conjecture 3.4.3 when \(G\) satisfies
the 2t-pebbling property.

Theorem 4.2.2. Let P_2 be the path on two vertices x_1 and x_2 and suppose G satisfies the 2t-pebbling property. Then $f_t(P_2 \times G) \leq 2f_t(G)$.

Proof. Without loss of generality assume that the target vertex is (x_1, y) for some y. If $p_1 + \frac{p_2 - q_2}{2} \geq f_t(G)$ then we can use Lemma 3.4.4 to put $f_t(G)$ pebbles on $\{x_1\} \times G$. Since this subgraph is isomorphic to G, we can then put t pebbles on (x_1, y). Also since G satisfies the 2t-pebbling property, if $\frac{p_2 + q_2}{2} > f_t(G)$ we can put 2t pebbles on (x_2, y) and then we can use a pebbling move to t-pebble (x_1, y). Hence the only distributions from which we cannot t-pebble the target satisfy the inequalities

\[
p_1 + \frac{p_2 - q_2}{2} < f_t(G)
\]
\[
\frac{p_2 + q_2}{2} \leq f_t(G)
\]

But adding these together shows that $p_1 + p_2 < 2f_t(G)$. Thus some configuration of pebbles from which we cannot t-pebble some target must begin with fewer than $2f_t(G)$ pebbles. So we get $f_t(P_2 \times G) \leq 2f_t(G)$.

Theorem 4.2.3. Suppose G satisfies the 2t-pebbling property. Let $P_3 = \{x_1, x_2, x_3\}$ be the path on three vertices. Consider the graph $P_3 \times G$. Then $f_t(\{x_2\} \times G) \leq 3f_t(G)$.

Proof. Since G has the 2t-pebbling property, we can put 2t pebbles on (x_1, y) unless $\frac{p_1 + q_1}{2} \leq f_t(G)$. By Lemma 3.4.4 and Theorem 4.2.2 we can put
Let us now generalize the definition of \(f(v, G) \) found in [32].

Definition 4.3.1:

If we have a digraph \(G \) with some pebbles placed on it, we let \(p \) be the total number of pebbles on \(G \) and \(r \) be the number of vertices of \(G \) with an odd number of pebbles. If \(G \) is a digraph and \(v \) is a vertex of \(G \), we say that \(f_t(v, G) \leq \alpha \) if

1. For all \(g \geq 1 \), if \(p \geq g\alpha \), then \(gt \) pebbles can be moved to \(v \).
2. For all \(g \geq 2 \), if \(p + r > g\alpha \), then \(gt \) pebbles can be moved to \(v \).

This definition is similar to Definition 3.3.4 and allows us to prove Theorem 4.3.2, below, which discusses the \(t \)-pebbling number of products.

In terms of the terminology of Definition 3.3.4, a graph which follows Definition 4.3.1 can also be called a graph with the odd 2\(t \)-pebbling property.
We now generalize the work of David Moew’s [32] in the setting of \(t \)-pebbling.

Theorem 4.3.2. Let \(U \) be a rooted tree with root \(v \) and let \(G \) be a digraph with \(w \) a vertex of \(G \). If \(f_t(w, G) \leq \alpha \), then

\[
f_t((v, w), U \times G) \leq f(v, U)f_t(w, G).
\]

Proof. The proof is by induction on \(h \), the height of \(U \). If \(h \) is zero, the result is trivial. Otherwise let \(P \) be a maximum path-partition of \(U \), and let \(U^1 \) be the subtree of \(U \) induced by the set of all vertices of level less than \(h \). Then, \(\{p_0 \cap E(U^1) \neq \varnothing / P_0 \in P\} = P^1 \) say, is a path-partition of \(U^1 \). If \(h = 1 \), we let \(P^1 \) contain one length zero path at \(v \). Let \(v_1, v_2, \ldots, v_n \) be the vertices in \(U \) which are parents of leaves of level \(h \). Then in \(P^1 \) there is a path to each \(v_j \), \(P_j \) say; let \(P_j \) have \(a_j \) edges. Let \(Q_1, Q_2, \ldots, Q_m \) be the remaining paths in \(P^1 \); and let \(Q_j \) have \(b_j \) edges. Now \(U \) can be obtained from \(U^1 \) by adding leaves to \(v_1, v_2, \ldots, v_n \). Suppose we add \(L \) leaves in all. Then since \(P \) is maximum, every path in \(P \) must touch a leaf, and the path-partition \(P \) must consist of the paths \(Q_1, Q_2, \ldots, Q_m \), combined with the paths \(P_1, P_2, \ldots, P_n \), each prefixed by an edge to \(v_j \) from one of its leaves, and \(L - n \) one edge paths to the \(v_j \)'s from their other leaves. Also, since \(P \) is maximum, the prefixed \(P_j \)'s together with these \(L - n \) one-edge paths must form a path-partition for the subtree \(U_0 \) of \(U \) induced by the vertices of level \(h \) and their ancestors. Hence if we let \(U_0^1 \) be the subtree of \(U^1 \) induced by the \(v_j \)'s and their ancestors, the \(P_j \)'s must form a path-partition of \(U_0^1 \).
Furthermore, the leaves \(\{v_1, v_2, \ldots, v_n\} \) of \(U_0^1 \) are all on the same level and each \(P_j \) touches the corresponding \(v_j \). Hence \(\{P_1, P_2, \ldots, P_n\} \) is in fact a maximum path-partition of \(U_0^1 \). This implies that \(P^1 \), which consists of the \(P_j \)'s and the \(Q_j \)'s, is a maximum path-partition of \(U^1 \).

Let \(f_t((v, w), U \times G) \leq X \) and \(f_t((v, w), U^1 \times G) \leq X^1 \). By induction,

\[
f_t((v, w), U^1 \times G) \leq f((v, U^1) f_t(w, G).
\]

That is, \(X^1 = \left(\sum_{i=1}^{n} 2^{a_i} + \sum_{j=1}^{m} 2^{b_j} - (m + n) + 1 \right) \alpha. \)

Note that \(P \) consists of paths of lengths \(a_1 + 1, a_2 + 1, \ldots, a_n + 1, b_1, b_2, \ldots, b_m \) and \(L - n \) paths of length 1. Hence

\[
X = \left(2(L - n) + \sum_{i=1}^{n} 2^{a_i+1} + \sum_{j=1}^{m} 2^{b_j} - (m + L) + 1 \right) \alpha.
\]

\[
= X^1 + \left(L + \sum_{i=1}^{n} 2^{a_i} - n \right) \alpha.
\]

Now setting \(G \) equal to the trivial graph and using the induction hypothesis, we see that \(f_t(v, U^1_0) \leq Q t \) where \(Q = \sum_{i=1}^{n} 2^{a_i} - n + 1. \)

Then \(X - X^1 = (L + Q - 1) \alpha. \)

Let \(g \geq 1. \) If \(p \geq gX \), we will prove that \(gt \) pebbles can be moved to \((v, w)\). It is enough to prove this for \(g = 1, \) since for \(g > 1 \) we can perform \(g \) steps, each one looking at \(X \) pebbles on \(U \times G \) and rearranging these pebbles to put \(t \) pebbles on \((v, w)\).

Let \(l_1, l_2, \ldots, l_L \) be the level-\(h \) vertices of \(U \), and let \(p^1 \) be the number of pebbles in \(U^1 \times G \) and \(p_k \) be the number of pebbles in \(\{l_k\} \times G \), where \(k = 1, 2, \ldots, L. \) Let \(r^1 \) be the number of vertices with an odd number of pebbles
in $U^1 \times G$ and r_k be the number of vertices with an odd number of pebbles in $\{l_k\} \times G$, where $k = 1, 2, \ldots, L$. If $p^1 + \sum_{k=1}^{L} \frac{p_k-r_k}{2} \geq X^1$, then we are done, since for each k and vertex $y \in G$, we can take two pebbles off (l_k, y) and put one pebble on some (v_i, y). Therefore for each k, we take $p_k - r_k$ pebbles from $\{l_k\} \times G$ and move $\frac{p_k-r_k}{2}$ pebbles into $U^1 \times G$. Now the total number of pebbles on $U^1 \times G$ is at least X^1 and so we can put the pebbles on (v, w), by the induction hypothesis.

Otherwise, since $p \geq X$, we have

$$\sum_{k=1}^{L} \frac{p_k + r_k}{2} = p - p^1 - \sum_{k=1}^{L} \frac{p_k - r_k}{2} > X - X^1,$$

$$\sum_{k=1}^{L} (p_k + r_k) > 2(X - X^1) = 2(L + Q - 1)\alpha \tag{4.1}$$

Now for each k, if $p_k + r_k > s\alpha$ for some $s \geq 2$, we can take pebbles from $\{l_k\} \times G$ and put st pebbles on (l_k, w), by hypothesis. Hence if $\frac{p_k+r_k-2\alpha}{2\alpha} > s \geq 0$, we can move $(2s+2)t$ pebbles to (l_k, w) and then $(s+1)t$ pebbles from (l_k, w) into $\{v_1, v_2, \ldots, v_n\} \times \{w\}$, and so by making s as large an integer as possible, we can put at least $\frac{(p_k+r_k-2\alpha)t}{2\alpha}$ pebbles on $U^1_0 \times \{w\}$. By doing this for all k, we can put at least $\sum_{k=1}^{L} \frac{(p_k+r_k-2\alpha)t}{2\alpha}$ pebbles in $U^1_0 \times \{w\}$.

Now

$$\sum_{k=1}^{L} \frac{(p_k + r_k - 2\alpha)t}{2\alpha} = \sum_{k=1}^{L} \frac{(p_k + r_k)t - 2\alpha L t}{2\alpha} > \frac{2\alpha(L + Q - 1) - 2\alpha L t}{2\alpha} = (Q - 1)t.$$
So we can put \(t \) pebbles on \((v, w)\), since \(f_t(v, U^1_0) \leq Q_t \).

Now we will prove that for all \(g \geq 2 \), if \(p + r > gX \), then we can put \(gt \) pebbles on \((v, w)\). It is enough to prove this for \(g = 2 \), since for \(g > 2 \), we can first take one pebble on each vertex with an odd number of pebbles, and augment this set with pairs of pebbles until we have \(2X + 1 - r \) pebbles.

Then we can put \(2t \) pebbles on \((v, w)\) by rearranging these pebbles. Then there will be at least \((g - 2)X\) pebbles which can be used to move \((g - 2)t\) additional pebbles to \((v, w)\).

If \(p^1 + r^1 > 2X^1 \), then by induction hypothesis, we can put \(2t \) pebbles on \((v, w)\).

Otherwise, \(p^1 + r^1 \leq 2X^1 \), \(2X^1 - r^1 \geq p^1 \). If \(p^1 \geq X^1 \), then we can put \(t \) pebbles on \((v, w)\) in \(U^1 \times G \). Also \(p + r - p^1 - r^1 > 2(X - X^1) \). So (4.1) holds and as above, we can move \(Q_t \) pebbles into \(U^1_0 \times \{w\} \). Therefore we can put \(t \) additional pebbles on \((v, w)\). Now let \(p^1 < X^1 \). Then we claim that we can move \(X^1 - p^1 \) pebbles into \(U^1 \times G \) which can be used to put \(t \) pebbles on \((v, w)\) in \(U^1 \times G \) and still sufficient number of pebbles can be left over in \((U \setminus U^1) \times G\) to put \(t \) additional pebbles on \((v, w)\). If

\[
\sum_{k=1}^{L} \frac{p_k - r_k}{2} \geq X^1 - p^1,
\]

then we can move \(X^1 - p^1 \) pebbles into \(U^1 \times G \). (4.2) will be true if

\[
\sum_{k=1}^{L} p_k - \sum_{k=1}^{L} r_k + 2p^1 \geq 2X^1.
\]

(4.3)
Now

\[
\sum_{k=1}^{L} p_k - \sum_{k=1}^{L} r_k + 2p^1 \geq p^1 + r^1 + \sum_{k=1}^{L} p_k - \sum_{k=1}^{L} r_k = p + r - 2\sum_{k=1}^{L} r_k \geq p + r - 2L|V(G)|
\]

Since \(f_t(w, G) \leq \alpha\), \(\alpha \geq |V(G)|\),

\[
\sum_{k=1}^{L} p_k - \sum_{k=1}^{L} r_k + 2p^1 \geq p + r - 2L\alpha.
\]

But \(X - X^1 \geq \alpha L\). So \(\sum_{k=1}^{L} p_k - \sum_{k=1}^{L} r_k + 2p^1 \geq p + r - 2X + 2X^1 > 2X - 2X^1 + 2X^1\).

So (4.3) holds.

After moving \(c\) pebbles out of the \(\{l_k\} \times G\)'s, the \(r_k\)'s will still be the same as before, because we remove pebbles by twos, but the sum of \(p_k\)'s will decrease by \(2c\). Hence to have sufficient number of pebbles left over in \((U \setminus U^1) \times G\) to put \(t\) additional pebbles on \((v, w)\), we must have

\[
\sum_{k=1}^{L} (p_k + r_k) - 2(X^1 - p^1) > 2(L + Q - 1)\alpha.
\]

That is, we must have

\[
\sum_{k=1}^{L} (p_k + r_k) + 2p^1 > 2X^1 + 2(L + Q - 1)\alpha
\]

(4.4)
We know $2(X - X^1) = 2(L + Q - 1)$ and so $2X = 2X^1 + 2(L + Q - 1)$. Now

$$\sum_{k=1}^{L} (p_k + r_k) + 2p^1 \geq \sum_{k=1}^{L} (p_k + r_k) + p^1 + r^1$$

$$= p + r > 2X.$$

So (4.4) follows and so we are done. \hfill \blacksquare

Theorem 4.3.3. Let U and W be rooted trees with roots v and w respectively. Then $f_t((v, w), U \times W) \leq f(v, w)f_t(w, W)$.

Proof. Follows from Theorem 4.3.2 and Theorem 4.1.9. \hfill \blacksquare