Chapter 3

On \(t \)-pebbling graphs

The \(t \)-pebbling number, \(f_t(G) \), of a connected graph \(G \), is the smallest positive integer such that from every placement of \(f_t(G) \) pebbles, \(t \) pebbles can be moved to any specified target vertex by a sequence of pebbling moves, each move taking two pebbles off a vertex and placing one on an adjacent vertex. In this chapter, we compute the \(t \)-pebbling number of Jahangir graphs; we give alternate proofs for the \(t \)-pebbling numbers of even and odd cycles.

In [17], Lourdusamy has defined the \(2t \)-pebbling property and the odd \(2t \)-pebbling property for a graph and has proved that all even cycles satisfy the \(2t \)-pebbling property. We give an alternate proof for the result that all even cycles satisfy the \(2t \)-pebbling property. We also prove that all odd cycles satisfy the \(2t \)-pebbling property. In [17], A. Lourdusamy has generalized Graham’s pebbling conjecture into \(f_t(G \times H) \leq f(G)f_t(H) \) where \(G \) and \(H \) are connected graphs. We call this the \(t \)-pebbling conjecture. In [17], A. Lourdusamy has proved that the \(t \)-pebbling conjecture is true for a graph which is the direct product of a path with an even cycle. We prove that the
The \(t \)-pebbling conjecture is true for a graph which is the direct product of a path with a cycle.

3.1 The \(t \)-pebbling number of Jahangir graphs

Graph pebbling is a model for the transmission of consumable resources. Chung [3] defines a pebbling distribution on a connected graph as a placement of pebbles on the vertices of the graph. A pebbling move then consists of removing two pebbles from one vertex, throwing one away, and putting the other pebble on an adjacent vertex. Chung defined the pebbling number of a vertex \(v \) in \(G \) as the smallest number \(f(v, G) \) such that from every placement of \(f(v, G) \) pebbles, it is possible to move a pebble to \(v \) by a sequence of pebbling moves. She also defined the \(t \)-pebbling number of \(v \) in \(G \) as the smallest number \(f_t(v, G) \) such that from every placement of \(f_t(v, G) \) pebbles, it is possible to move \(t \) pebbles to \(v \). Then the \(t \)-pebbling number of \(G \) is the smallest number \(f_t(G) \) such that from any placement of \(f_t(G) \) pebbles, it is possible to move \(t \) pebbles to any specified target by a sequence of pebbling moves. Thus \(f_t(G) \) is the largest value of \(f_t(v, G) \) over all vertices \(v \). The value of \(f_t(G) \) for \(t = 1 \) is the pebbling number of \(G \), denoted by \(f(G) \).

With regard to the \(t \)-pebbling number of graphs, we find the following theorems in [16, 17, 20, 21, 30].

Theorem 3.1.1 ([30]). Let \(G \) be a connected graph on \(n \) vertices where \(n \geq 2 \). Let there be a vertex \(v \) such that \(d(v) = n - 1 \). Then \(f_t(v, G) = 2t + n - 2 \).
Theorem 3.1.2 ([30]). Let K_n be the complete graph on n vertices where $n \geq 2$. Then $f_t(K_n) = 2t + n - 2$.

Theorem 3.1.3 ([16]). Let $K_1 = \{v\}$. Let $C_{n-1} = (u_1, u_2, \ldots, u_{n-1})$ be a cycle of length $n - 1$. Then the t-pebbling number of the wheel graph W_n is $f_t(W_n) = 4t + n - 4$ for $n \geq 5$.

In order to bring home the notation for complete r-partite graph given in [21] we recall Definition 1.0.16 again in Definition 3.1.4.

Definition 3.1.4:
A graph $G = (V, E)$ is called an r-partite graph if V can be partitioned into r non-empty subsets V_1, V_2, \ldots, V_r such that no edge of G joins vertices in the same set. The sets V_1, V_2, \ldots, V_r are called partite sets or vertex classes of G.

If G is an r-partite graph having partite sets V_1, V_2, \ldots, V_r such that every vertex of V_i is joined to every vertex of V_j, where $1 \leq i, j \leq r$ and $i \neq j$, then G is called a complete r-partite graph. If $|V_i| = s_i$, for $i = 1, 2, \ldots, r$, then we denote G by $K_{s_1, s_2, \ldots, s_r}$.

Notation 3.1.5 ([21]):
For $s_1 \geq s_2 \geq \cdots \geq s_r, s_1 > 1$ and if $r = 2, s_2 > 1$, let $K^*_{s_1, s_2, \ldots, s_r}$ be the complete r-partite graph with s_1, s_2, \ldots, s_r vertices in vertex classes C_1, C_2, \ldots, C_r respectively. Let $n = \sum_{i=1}^{r} s_i$.

Theorem 3.1.6 ([21]). For $G = K_{s_1, s_2, \ldots, s_r}^*$,

$$f_t(G) = \begin{cases}
2t + n - 2, & \text{if } 2t \leq n - s_1 \\
4t + s_1 - 2, & \text{if } 2t \geq n - s_1
\end{cases}$$

Theorem 3.1.7 ([30]). Let $K_{1,n}$ be an n-star where $n > 1$. Then $f_t(K_{1,n}) = 4t + n - 2.$

Theorem 3.1.8 ([30]). Let C_n denote a simple cycle with n vertices, where $n \geq 3$. Then

$$f_t(C_n) = \begin{cases}
t(2^{\frac{n}{2}}), & \text{if } n \text{ is even} \\
1 + (t - 1)(2^{\frac{n}{2}}) + 2 \left\lceil \frac{\sqrt{2} \left\lfloor \frac{n}{2} \right\rfloor}{3} \right\rceil - 1, & \text{if } n \text{ is odd}
\end{cases}$$

Theorem 3.1.9 ([30]). Let P_n be a path on n vertices. Then $f_t(P_n) = t(2^{n-1}).$

Theorem 3.1.10 ([30]). Let Q_n be the n-cube. Then $f_t(Q_n) = t(2^n).$

For t-pebbling, the readers are invited to go through papers [16, 17, 20, 21, 28, 30].

Now, we determine the t-pebbling number of Jahangir graphs.

Theorem 3.1.11. For the Jahangir graph $J_{2,3}$, $f_t(J_{2,3}) = 8t$.

Proof. Consider the Jahangir graph $J_{2,3}$. We prove this theorem by induction on t. By Theorem 2.2.3, the result is true for $t = 1$. For $t > 1$, $J_{2,3}$
contains at least 16 pebbles. Using at most 8 pebbles, we can put a pebble
on any desired vertex, say \(v_i \) (1 \(\leq \) \(i \) \(\leq \) 7), by Theorem 2.2.3. Then, the re-
maining number of pebbles on the vertices of the graph \(J_{2,3} \) is at least \(8t - 8 \). By induction we can put \((t - 1) \) additional pebbles on the desired vertex \(v_i \) (1 \(\leq \) \(i \) \(\leq \) 7). So, the result is true for all \(t \). Thus, \(f_t(J_{2,3}) \leq 8t \).

Now, we have to show that \(8t \) pebbles are necessary for moving a pebble
to any desired vertex from any configuration. For that, consider the following
configuration \(C \) such that \(C(v_4) = 8t - 1 \), and \(C(x) = 0 \) where \(x \in V - \{v_4\} \),
then we cannot move \(t \) pebbles to the vertex \(v_1 \). Thus, \(f_t(J_{2,3}) \geq 8t \).

Therefore, \(f_t(J_{2,3}) = 8t \).

Theorem 3.1.12. For the Jahangir graph \(J_{2,4} \), \(f_t(J_{2,4}) = 16t \).

Proof. Consider the Jahangir graph \(J_{2,4} \). We prove this theorem by induc-
tion on \(t \). By Theorem 2.2.4, the result is true for \(t = 1 \). For \(t > 1 \), \(J_{2,4} \) contains at least 32 pebbles. By Theorem 2.2.4, using at most 16 pebbles,
we can put a pebble on any desired vertex, say \(v_i \) (1 \(\leq \) \(i \) \(\leq \) 9). Then, the
remaining number of pebbles on the vertices of the graph \(J_{2,4} \) is at least
\(16t - 16 \). By induction, we can put \((t - 1) \) additional pebbles on the desired
vertex \(v_i \) (1 \(\leq \) \(i \) \(\leq \) 9). So, the result is true for all \(t \). Thus, \(f_t(J_{2,4}) \leq 16t \).

Now, we have to show that \(16t \) pebbles are necessary for moving a pebble
to any desired vertex from any configuration. For that, consider the following
configuration \(C \) such that \(C(v_6) = 16t - 1 \), and \(C(x) = 0 \) where \(x \in V - \{v_6\} \),
then we cannot move \(t \) pebbles to the vertex \(v_2 \). Thus, \(f_t(J_{2,4}) \geq 16t \).

Therefore, \(f_t(J_{2,4}) = 16t \).
Theorem 3.1.13. For the Jahangir graph $J_{2,5}$, $f_t(J_{2,5}) = 16t + 2$.

Proof. Consider the Jahangir graph $J_{2,5}$. We prove this theorem by induction on t. By Theorem 2.2.5, the result is true for $t = 1$. For $t > 1$, $J_{2,5}$ contains at least 34 pebbles. Using at most 16 pebbles, we can put a pebble on any desired vertex, say v_i ($1 \leq i \leq 11$). Then, the remaining number of pebbles on the vertices of the graph $J_{2,5}$ is at least $16t - 14$. By induction, we can put $(t - 1)$ additional pebbles on the desired vertex v_i ($1 \leq i \leq 11$). So, the result is true for all t. Thus, $f_t(J_{2,5}) \leq 16t + 2$.

Now, we have to show that $16t + 2$ pebbles are necessary for moving a pebble to any desired vertex from any configuration. For that, consider the following distribution C such that $C(v_6) = 16t - 1$, $C(v_8) = 1$, $C(v_{10}) = 1$ and $C(x) = 0$ where $x \in V - \{v_6, v_8, v_{10}\}$. Then we cannot move t pebbles to the vertex v_2. Thus, $f_t(J_{2,5}) \geq 16t + 2$.

Therefore, $f_t(J_{2,5}) = 16t + 2$. \blacksquare

Theorem 3.1.14. For the Jahangir graph $J_{2,m}$ ($m \geq 6$), $f_t(J_{2,m}) = 16(t - 1) + f(J_{2,m})$.

Proof. Consider the Jahangir graph $J_{2,m}$, where $m > 5$. We prove this theorem by induction on t. By Theorem 2.2.6, Theorem 2.2.7, and Theorem 2.3.1, the result is true for $t = 1$. For $t > 1$, $J_{2,m}$ contains at least $16 + f(J_{2,m}) = 16 + \begin{cases} 2m + 9, & \text{if } m = 6 \text{ or } 7 \\ 2m + 10, & \text{if } m \geq 8 \end{cases}$ pebbles. Using at most 16 pebbles, we can put a pebble on any desired vertex, say v_i ($1 \leq i \leq 2m + 1$). Then, the remaining number of pebbles on the vertices of the graph $J_{2,m}$ is at
least $16t + f(J_{2,m}) - 32$. By induction, we can put $(t - 1)$ additional pebbles on the desired vertex v_i ($1 \leq i \leq 2m + 1$). So, the result is true for all t. Thus, $f_t(J_{2,m}) \leq 16(t - 1) + f(J_{2,m})$.

Now, we have to show that $16(t - 1) + f(J_{2,m})$ pebbles are necessary for moving a pebble to any desired vertex from any configuration.

For $m = 6$, consider the following distribution C such that $C(v_6) = 16(t - 1) + 15$, $C(v_{10}) = 3$, $C(v_8) = 1$, $C(v_{12}) = 1$ and $C(x) = 0$ where $x \in V - \{v_6, v_8, v_{10}, v_{12}\}$.

For $m = 7$, consider the following distribution C such that $C(v_6) = 16(t - 1) + 15$, $C(v_{10}) = 3$, $C(v_8) = C(v_{12}) = C(v_{13}) = C(v_{14}) = 1$ and $C(x) = 0$ where $x \in V - \{v_6, v_8, v_{10}, v_{12}, v_{13}, v_{14}\}$.

For $m \geq 8$, if m is even, consider the following distribution C_1 such that $C_1(v_{m+2}) = 16(t - 1) + 15$, $C_1(v_{m-2}) = 3$, $C_1(v_{m+6}) = 3$, $C_1(x) = 1$ where $x \notin \{N[v_2], N[v_{m+2}], N[v_{m-2}], N[v_{m+5}]\}$ and $C_1(y) = 0$ where $y \in \{N[v_2], N(v_{m+2}), N(v_{m-2}), N(v_{m+6})\}$.

If m is odd, then consider the following configuration C_2 such that $C_2(v_{m+1}) = 16(t - 1) + 15$, $C_2(v_{m-3}) = 3$, $C_2(v_{m+5}) = 3$, $C_2(x) = 1$ where $x \notin \{N[v_2], N[v_{m+1}], N[v_{m-3}], N[v_{m+5}]\}$ and $C_2(y) = 0$ where $y \in \{N[v_2], N(v_{m+1}), N(v_{m-3}), N(v_{m+5})\}$.

Then, we cannot move t pebbles to the vertex v_2 of $J_{2,m}$ for all $m \geq 6$.

Thus, $f_t(J_{2,m}) \geq 16(t - 1) + \begin{cases} 2m + 9, & \text{if } m = 6 \text{ or } 7 \\ 2m + 10, & \text{if } m \geq 8 \end{cases}$.

That is, $f_t(J_{2,m}) \geq 16(t - 1) + f(J_{2,m})$.

Therefore, $f_t(J_{2,m}) = 16(t - 1) + f(J_{2,m})$. \hfill \blacksquare
Clarke, Hochberg and Hurlbert [4] defined the concept of pebbling number of a graph through the concept of bad pebbling distribution as follows:

Suppose D is a distribution of pebbles on the vertices of G and there is some choice of a root vertex r such that it is impossible to move a pebble to r, then we say that D is a bad pebbling distribution [4]. We denote by $D(v)$ the number of pebbles on a vertex v in D and let $|D|$ be the total number of pebbles in D, that is, $|D| = \sum_{v \in V(G)} D(v)$. This yields another way to define $f(G)$ as one more than the maximum k such that there exists a bad pebbling distribution D of size k. We generalize this in the setting of t-pebbling and we define the t-pebbling number of a graph in a similar way.

We give alternate proof for the t-pebbling number of cycles.

If D_t is a distribution of pebbles on the vertices of G and there is some choice of a vertex r (r is any specified root vertex or target vertex) such that it is impossible to move t pebbles to r then we say that D_t is a bad t-pebbling distribution. We denote $D_t(v)$ the number of pebbles on vertex v in D_t and let $|D_t|$ be the total number of pebbles in D_t, that is $|D_t| = \sum_{v \in V(G)} D_t(v)$.

Definition 3.2.1:

We define the t-pebbling number of a graph G, $f_t(G)$, to be one more than the maximum k such that there exists a bad t-pebbling distribution D_t of size k.

We now proceed to give alternate proofs for the t-pebbling numbers of even and odd cycles.
Theorem 3.2.2. The pebbling number of C_{2k} satisfies $f_t(C_{2k}) = t2^k$.

Proof. Let $V(C_{2k}) = \{x_0, x_1, \ldots, x_{2k-2}, x_{2k-1}\}$ and $E(C_{2k}) = \{x_0x_1, x_1x_2, \ldots, x_{2k-1}x_0\}$.

Without loss of generality we assume that x_0 is the target vertex. Clearly $\text{diam}(C_{2k}) = d(x_0, x_k) = k$ so $x = t2^k - 1$ is the maximum number of pebbles that can be placed at x_k such that t pebbles could not be moved to x_0. Suppose x pebbles are placed at x_k. Since $\text{diam}(C_{2k}) = k$, if a pebble is placed on any vertex of C_{2k}, it would be possible to put t pebbles on x_0 with x pebbles at x_k.

Since the t-pebbling number is one more than the maximum numbers of pebbles that can be placed on the graph such that t-pebbles could not be moved to every vertex in the graph, the t-pebbling number is $x + 1$.

Theorem 3.2.3. The t-pebbling number of C_{2k+1} satisfies

$$f_t(C_{2k+1}) = \frac{2^{k+1} - (-1)^{k+2}}{3} + (t - 1)2^k.$$

Proof. Let $V(C_{2k+1}) = \{x_0, x_1, \ldots, x_{2k-1}, x_{2k}\}$.

Let $E(C_{2k+1}) = \{x_0x_1, x_1x_2, \ldots, x_{2k-1}x_{2k}, x_{2k}x_0\}$.

Let x_0 be the target vertex.

Clearly $\text{diam}(C_{2k+1}) = d(x_0, x_k) = d(x_0, x_{k+1}) = k$.

Let us consider a configuration of y pebbles at x_k and z pebbles at x_{k+1} such that

$$y + \frac{z}{2} < t(2^k) \quad (3.1)$$
and \(\frac{y}{2} + z < t(2^k) \) \hspace{1cm} (3.2)

Clearly we cannot put \(t \)-pebbles on \(x_0 \). We also observe that if we place an additional pebble on any vertex of \(C_{2k+1} \), we can put \(t \) pebbles on \(x_0 \). Then for the above configuration the inequalities would become

\[
2y + z \leq t(2^{k+1}) - 1, \\
y + 2z \leq t(2^{k+1}) - 1.
\]

So we get \(y + z \leq \left\lfloor \frac{t(2^{k+2} - 2)}{3} \right\rfloor \).

Thus the maximum number of pebbles placed altogether on \(x_k \) and \(x_{k+1} \) in order that we may not put \(t \) pebbles on \(x_0 \) is \(\left\lfloor \frac{t(2^{k+2}) - 2}{3} \right\rfloor \).

Since the \(t \)-pebbling number is one more than the maximum number of pebbles placed on \(C_{2k+1} \) such that \(t \) pebbles could not be moved to every vertex in the graph, the \(t \)-pebbling number of \(C_{2k+1} \) is

\[
f_t(C_{2k+1}) = \left\lfloor \frac{t(2^{k+2}) - 2}{3} \right\rfloor + 1
\]

\[
= \left\lfloor \frac{2^{k+2} - 2}{3} + (t - 1)\frac{2^{k+2}}{3} \right\rfloor + 1
\]

\[
= \begin{cases}
\left\lfloor \frac{2^{k+2} - 2}{3} + (t - 1)\frac{2^{k+2}}{3} \right\rfloor + 1 & \text{if } k \text{ is odd} \\
\left\lfloor \frac{2^{k+2} - 4}{3} + (t - 1)\left(\frac{2^{k+2}}{3} + \frac{2}{3} \right) \right\rfloor + 1 & \text{if } k \text{ is even}
\end{cases}
\]

\[
= \begin{cases}
\left\lfloor \frac{2^{k+2} - 2}{3} \right\rfloor + 1, & \text{if } k \text{ is odd} \\
\left\lfloor \frac{2^{k+2} - 4}{3} \right\rfloor + 1, & \text{if } k \text{ is even}
\end{cases}
\]
\[t + pebbling graphs \]

\[\begin{align*}
&= \begin{cases}
\frac{2^{k+2}-2}{3} + (t - 1)2^k + 1, & \text{if } k \text{ is odd} \\
\frac{2^{k+2}-4}{3} + (t - 1)2^k + 1, & \text{if } k \text{ is even}
\end{cases} \\
&= \begin{cases}
\frac{2^{k+2}-2+3}{3} + (t - 1)2^k, & \text{if } k \text{ is odd} \\
\frac{2^{k+2}-4+3}{3} + (t - 1)2^k, & \text{if } k \text{ is even}
\end{cases} \\
&= \begin{cases}
\frac{2^{k+2}+1}{3} + (t - 1)2^k, & \text{if } k \text{ is odd} \\
\frac{2^{k+2}-1}{3} + (t - 1)2^k, & \text{if } k \text{ is even}
\end{cases} \\
&= \frac{2^{k+2} - (-1)^{k+2}}{3} + (t - 1)2^k
\end{align*} \]

\section{3.3 The 2t-pebbling property of Cycles}

Chung defined the two pebbling property of a graph, and Wang \cite{37} extended Chung’s definition to the odd two-pebbling property. In [3, 37] we find the following definitions.

Definition 3.3.1 ([3]):

Suppose \(p \) pebbles are placed on a graph \(G \) in such a way that \(q \) vertices of \(G \) are occupied, that is, there are exactly \(q \) vertices which have one pebble or more. We say the graph \(G \) satisfies the 2-pebbling property if we can put two pebbles on any specified vertex of \(G \) starting from every configuration in which \(p \geq 2f(G) - q + 1 \) or equivalently \((p + q) > 2f(G) \).

Definition 3.3.2 ([37]):

Suppose \(p \) pebbles are placed on a graph \(G \) in such a way that there are exactly \(r \) vertices which have odd number of pebbles. We say the graph \(G \) satisfies the
odd 2-pebbling property if we can put two pebbles on any specified vertex of G starting from every configuration in which $p \geq 2f(G) - r + 1$ or equivalently $(p + r) > 2f(G)$.

Let us now generalize these concepts.

Definition 3.3.3 ([17]):
Given the t-pebbling of G, let p be the number of pebbles on G, let q be the number of vertices with at least one pebble. We say that G satisfies the $2t$-pebbling property if it is possible to move $2t$ pebbles to any specified target vertex of G starting from every configuration in which $p \geq 2f_t(G) - q + 1$ or equivalently $p + q > 2f_t(G)$ for all t.

If q stands for the number of vertices with an odd number of pebbles, we call the property, the odd $2t$-pebbling property.

Definition 3.3.4 ([17]):
We say a graph satisfies the odd $2t$-pebbling property for all t. If, for any arrangement of pebbles with at least $2f_t(G) - r + 1$ pebbles, where r is the number of vertices in the arrangement with an odd number of pebbles, it is possible to put $2t$ pebbles on any target vertex using pebbling moves.

It is easy to see that a graph which satisfies the $2t$-pebbling property also satisfies the odd $2t$-pebbling property for all t.

For $t = 1$, Definition 3.3.3 gives the two pebbling property and Definition 3.3.4 gives the odd two-pebbling property.

In this section let us discuss the $2t$-pebbling property of cycles.
Notation 3.3.5:
Let the vertices of C_m be $\{x_0, x_1, \ldots, x_{m-1}\}$ in order.

Without loss of generality, assume x_0 is the target vertex in C_m. Given a configuration of pebbles on C_m, we let p_i represent the number of pebbles on x_i. If m is even, we suppose $m = 2k$, and if m is odd, we let $m = 2k + 1$. In either case, we define the vertex sets A and B by $A = \{x_1, x_2, \ldots, x_{k-1}\}$; $B = \{x_{m-1}, x_{m-2}, \ldots, x_{m-k+1}\}$. Let p_A and p_B denote the number of pebbles on A and B respectively.

![Figure 3.1: Even and odd cycles.](image)

Lemma 3.3.6. Let S be a subset of vertices in a graph G. Suppose we have a configuration on G with q occupied vertices in which each x_i has p_i pebbles. Then

$$\sum_{x_i \in S} p_i + \sum_{x_i \notin S} p_i \geq p + 2 - |S|.$$
Proof. We can rewrite the left side of the inequality as

\[\sum_{x_i \in S} p_i + \sum_{x_i \notin S} p_i + \sum_{x_i \notin S} p_i \geq p + \sum_{x_i \notin S} p_i \]

So it is sufficient to show \(p + \sum_{x_i \notin S} p_i \geq p + q - |s| \).

That is, it is enough to show that \(\sum_{x_i \notin S} p_i \geq q - |s| \).

That is, it is enough to show that \(q \leq \sum_{x_i \notin S} p_i + |s| \).

We observe that on the right hand side, all the vertices in \(S \) are counted (occupied or not), and each occupied \(x_i \) not in \(S \) is counted \(p_i \) times, \(p_i \geq 1 \).

Hence each occupied vertex is counted at least once, whether it is in \(S \) or not, and so the total is at least \(q \).

\[\sum_{x_i \notin S} p_i \geq p + q - |s| \]

\[q \leq \sum_{x_i \notin S} p_i + |s| \]

\[q \leq \sum_{x_i \notin S} p_i + |s| \]

\[q \leq |V(C)| \leq f(C) \]

Theorem 3.3.7. All cycles satisfy the 2t-pebbling property if the target vertex has a pebble.

Proof. Consider a configuration of pebbles on \(C \) in which \(p \) pebbles occupy \(q \) vertices where \(p + q \geq 2f_t(C) + 1 \).

Then \(p + q \geq 2f(C) + 2^{k+1}(t - 1) + 1 \).

That is, \(p \geq f(C) + 2^{k+1}(t - 1) + 1 \) where the inequality follows because \(q \leq |V(C)| \leq f(C) \).

Case 1: \(t = 1 \).

Then \(p \geq f(C) + 1 \).

If \(x_0 \) has a pebble the remaining \(f(C) \) pebbles would suffice to put an additional pebble on \(x_0 \).

Case 2: \(t > 1 \).

Then regardless of whether cycle is even or odd, there are at least \((t - 1) \) pebbles available on \(x_0 \).
1) \(2^{k+1}\) pebbles on the graph.

We claim that there are at least \((t-1)2^{k+1}\) pebbles on \(A \cup \{x_0, x_k\}\), which is isomorphic to \(p_{k+1}\). Suppose not.

Then there are at most \((t-1)2^k\) pebbles on \(A \cup \{x_0, x_k\}\) and there are at most \((t-1)2^k\) pebbles on the other path. So there are at most \((t-1)2^{k+1}\) pebbles on both paths, and that there are at most \((t-1)2^{k+1}\) pebbles on \(C\). This is a contradiction to \(p \geq f(C) + (t-1)2^{k+1} + 1\).

Hence there are at least \((t-1)2^k\) pebbles on \(A \cup \{x_0, x_k\}\). So we can move \(2(t-1)\) pebbles to \(x_0\). Using the remaining \(f(C)\) pebbles we can move an additional pebble to \(x_0\). Therefore, the number of pebbles on \(x_0\) is \(2t\).

Lourdusamy [17] has proved that even cycles satisfy the \(2t\)-pebbling property. We now give an alternate proof for the result.

Theorem 3.3.8. The even cycle \(C_{2k}\) satisfies the \(2t\)-pebbling property for all \(k \geq 2\).

Proof. Consider a configuration of pebbles on \(C_{2k}\) in which \(p\) pebbles occupy \(q\) vertices where \((p + q) \geq 2f_t(C_{2k}) + 1\).

Since \(q \leq |V(C_{2k})| \leq f(C_{2k}) \leq f_t(C_{2k})\), we get

\[p + q \geq q + f_t(C_{2k}) + 1 \]

That is, \(p \geq f_t(C_{2k}) + 1\)

That is, \(p \geq t(2^k)\).

By Theorem 3.3.7, we may assume that the target vertex \(x_0\) is not occupied. So \(p_0 = 0\).

We claim that we can move at least \(t\) pebbles to \(x_0\) using only the pebbles
of either $A \cup \{x_k\}$ or $B \cup \{x_k\}$.

Suppose not, then

\[
\frac{p_k - 1}{2} + p_A \leq t(2^{k-1}) - 1
\]
\[
\frac{p_k - 1}{2} + p_B \leq t(2^{k-1}) - 1
\]

For, if one of these inequalities fails, we could put $t(2^{k-1})$ pebbles on either A or B and these would be sufficient to put t pebbles on x_0. Now adding together these inequalities we get

\[
p_k - 1 + p_A + p_B \leq t(2^k) - 2
\]

That is, $p_k + p_A + p_B \leq t(2^k) - 1$.

That is, $p < t(2^k)$.

This is a contradiction to $p > t(2^k)$.

Hence without loss of generality we assume that the pebbles on $A \cup \{x_k\}$ are sufficient to put t pebbles on x_0. We break the rest of the proof into two cases. Either the pebbles on A are sufficient by themselves to put t pebbles on x_0 or the pebbles on x_k are required as well to put t pebbles on x_0.

Case 1: Suppose the pebbles on A are sufficient to put t pebbles on x_0.

We then try to use the pebbles on $B \cup \{x_k\}$ to put t more pebbles on x_0. If the pebbles on $B \cup \{x_k\}$ are not sufficient to put t more pebbles on x_0 then,

\[
p_k + 2p_{k+1} + 4p_{k+2} + \cdots + 2^{k-1}p_{2k-1} \leq t(2^k) - 1
\] (3.3)

Since we have assumed the pebbles on A are sufficient to put t pebbles
on \(x_0 \), we can use the pebbles on \(A \cup \{x_k\} \) to put \(2t \) pebbles on \(x_0 \) unless

\[
p_k + 2p_{k-1} + 4p_{k-2} + \cdots + 2^{k-1}p_1 \leq t(2^{k+1}) - 1 \quad (3.4)
\]

Adding (3.3) and (3.4) we get,

\[
2^{k-1}p_1 + 2^{k-2}p_2 + \cdots + 2^2p_{k-2} + 2p_{k-1} + p_k + p_k + 2p_{k+2} + \cdots + 2^{k-1}p_{2k-1} \leq 2(2^{k-1} + 2^k - 1).
\]

Now dividing by two we get an inequality in which each pebble is counted once and every pebble except for those on \(x_{k-1}, x_k \) and \(x_{k+1} \) is counted at least twice. Thus we have,

\[
2p_1 + \cdots + 2p_{k-2} + p_k + p_{k+1} + 2p_{k+2} + \cdots + 2p_{2k-1} \leq 3t(2^{k-1}) - 1
\]

Applying Lemma 3.3.6 with \(S = \{x_{k-1}, x_k, x_{k+1}\} \) we find the left side is at least as large as \(p + q - 3 \).

Therefore, we can move \(2t \) pebbles to \(x_0 \) unless

\[
p + q \leq 3t(2^{k-1}) + 2.
\]

That is, \(2f_t(C_{2k}) + 1 \leq 3t(2^{k-1}) + 2 \).

That is, \(t(2^{k+1}) + 1 \leq 3t(2^{k-1}) + 2 \).

This is a contradiction to \(k \geq 2 \).

Hence \(2t \) pebbles can be moved to \(x_0 \).
Case 2: The pebbles on x_k are required as well to put t pebbles on x_0.

Apart from the pebbles of A, if the pebbles on x_k are required for the first t pebbles, we transfer enough pebbles from x_k to A to put t pebbles on x_0. This costs at most $t(2^k) - 2p_A$ pebbles from x_k. We then use the remaining pebbles on x_k along with the pebbles on B to put t more pebbles on x_0. We can do this as long as

$$p_k - (t(2^k) - 2p_A) + 2p_B \geq t(2^k) \quad \text{or}$$

$$p_k + 2p_A + 2p_B \geq t(2^{k+1})$$

Applying Lemma 3.3.6, $S = \{x_k\}$, the left side of this inequality is at least $p + q - 1 \geq 2f_t(C_{2k}) + 1 - 1 = t(2^{k+1})$ which is always true. Hence we can move $2t$ pebbles to x_0.

We now proceed to prove that the odd cycles satisfy the $2t$-pebbling property. First we will show that C_3 possesses this property.

Theorem 3.3.9. The cycle C_3 satisfies the $2t$-pebbling property.

Proof. Consider a configuration of pebbles on C_3 in which p pebbles occupy q vertices where $(p + q) \geq 2f_t(C_3) + 1$.

By Theorem 3.3.7, we may assume that $p_0 = 0$.

First we prove the result for $t = 1$. We claim that either we can put 2 pebbles on x_0 using the pebbles on $\{x_1, x_2\}$ or we can put a pebble on x_0 using the pebbles on x_1. Suppose not.

Then $p_1 + 2p_2 \leq 7$.

Also \(p_1 \leq 1 \).

Adding and dividing by two, we get \(p_1 + p_2 \leq 4 \).

Applying Lemma 3.3.6, with \(S = \{ x_1, x_2 \} \).

We see that \(p + q - 2 \leq 4 \).

That is, \(p + q \leq 6 \).

But \(p + q \geq 2f(C_3) + 1 = 7 \).

Thus we get \(7 \leq p + q \leq 6 \).

This is a contradiction.

Thus we can put two pebbles on \(x_0 \) in all cases by using either pebbles on \(\{ x_1, x_2 \} \) or by using the pebbles on \(x_1 \) for the first pebble and those on \(x_2 \) for the second pebble.

Let us now prove theorem, for \(t > 1 \). If \(q = 1 \), then \(p \geq 2(2t + 1) \). These pebbles are placed either at \(x_1 \) or \(x_2 \). Then it is easy to see that we can move \(2t \) pebbles to \(x_0 \). Let us now consider the case \(q = 2 \).

In this case we distribute at least \(4t + 1 \) pebbles on \(x_1 \) and \(x_2 \). Let us now assume that we distribute exactly \(4t + 1 \) pebbles on \(x_1 \) and \(x_2 \). In distributing these \(4t + 1 \) pebbles, we may assume without loss of generality, that the different choices of pebbles for \(x_1 \) are \(1, 2, \ldots, t, t + 1, \ldots, 2t \) and the corresponding choices of pebbles for \(x_2 \) are \(4t, 4t - 1, \ldots, 3t + 1, 3t, 3t - 1, \ldots, 2t + 1 \). We observe that the choices of pebbles for \(x_1 \) are of two clumps each of length \(t \). Similarly the choices of pebbles for \(x_2 \) are also of two clumps each of length \(t \). The pairs of pebbles on \((x_1, x_2) \) are \((p_1, p_2) = (1, 4t), (2, 4t - 1), \ldots, (t - 3, 3t), (t, 3t + 1), (t + 1, 3t), (t + 2, 3t - 1), \ldots, (2t, 2t + 1) \).

Now it is easy to see that from the choices of pebbles on \((x_1, x_2) \), we can move \(2t \) pebbles to \(x_0 \).
Hence C_3 satisfies the $2t$-pebbling property for all t. ■

We now prove that all odd cycles other than C_3 also satisfy the $2t$-pebbling property.

Theorem 3.3.10. The cycle C_{2k+1} satisfies the $2t$-pebbling property for all t where $k \geq 2$.

Proof. Consider a configuration of pebbles on C_{2k+1} in which p pebbles occupy q vertices where $(p + q) \geq 2f_t(C_{2k+1}) + 1$.

By Theorem 3.3.7, we may assume that x_0 has zero pebbles.

If either,

\[
p_k + 2p_{k+1} + \cdots + 2^k p_{2k} \geq t(2^{k+2}) \quad \text{or} \quad p_{k+1} + 2p_k + \cdots + 2^k p_1 \geq t(2^{k+2})
\]

we can use either the pebbles of $B \cup \{x_{k+1}, x_k\}$ or $A \cup \{x_k, x_{k+1}\}$ to put $2t$ pebbles on x_0. For other configurations of pebbles we note that we can move at least t pebbles to x_0 using only the pebbles of either $A \cup \{x_k\}$ or $B \cup \{x_{k+1}\}$. Otherwise we have

\[
p_k + 2p_{k-1} + \cdots + 2^{k-1} p_1 \leq t(2^k) - 1,
\]

\[
p_{k+1} + 2p_{k+2} + \cdots + 2^{k-1} p_{2k} \leq t(2^k) - 1.
\]

Adding these inequalities together we get,

\[2^{k-1} p_1 + \cdots + 2p_{k-1} + p_k + p_{k+1} + 2p_{k+2} + \cdots + 2^{k-1} p_{2k} \leq t(2^{k+1}) - 2.\]
Applying Lemma 3.3.6, with $S = \{x_k, x_{k+1}\}$, we see that the left hand side is at least $p + q - 2$. So we get $p + q - 2 \leq t(2^{k+1}) - 2$.

Substituting $(p + q) \geq 2f_t(C_{2k+1}) + 1$, we get

$$2 \left(\frac{2^{k+2} - (-1)^{k+2}}{3} + (t - 1)2^k \right) + 1 \leq t(2^{k+1}).$$

This gives $2^{k+3} + 3 \leq 2(-1)^{k+2} + 3(2^{k+1})$, which is a contradiction to $k \geq 2$. Hence we can move at least t pebbles to x_0 using only the pebbles of either $A \cup \{x_k\}$ or $B \cup \{x_{k+1}\}$.

Hence without loss of generality, we assume the pebbles on $A \cup \{x_k\}$ are sufficient to put at least t pebbles on x_0. We now have two cases: either the pebbles on A are sufficient by themselves or the pebbles on x_k are required as well.

Case 1: Suppose the pebbles of A are sufficient by themselves for the first t pebbles.

Then we can use the pebbles of $B \cup \{x_{k+1}, x_k\}$ to put t additional pebbles on x_0. This succeeds unless

$$p_k + 2p_{k+1} + 2^2p_{k+2} + \cdots + 2^kp_{2k} \leq t(2^{k+1}) - 1 \quad (3.5)$$

Similarly we can use the pebbles of $A \cup \{x_k\}$ to put $2t$ pebbles on x_0 unless,

$$p_k + 2p_{k-1} + \cdots + 2^{k-1}p_1 \leq t(2^{k+1}) - 1 \quad (3.6)$$
Adding together these inequalities (3.5), (3.6) and dividing by two gives,

\[2^{k-2}p_1 + 2^{k-3}p_2 + \cdots + 2p_{k-2} + p_{k-1} + p_k + p_{k+1} + 2p_{k+2} + \cdots + 2^{k-1}p_{2k} \leq t(2^{k+1}) - 1. \]

Applying Lemma 3.3.6 with \(S = \{x_{k-1}, x_k, x_{k+1}\} \), we see that the left side is at least \(p + q - 3 \). So we get

\[p + q - 3 \leq t(2^{k+1}) - 1. \]

Substituting \(p + q \geq 2f_t(C_{2k+1}) + 1 \), we get

\[2 \left(\frac{2^{k+2} - (-1)^{k+2}}{3} + (t - 1)2^k \right) + 1 \leq t(2^{k+1}) + 2 \]

This gives, \(2^{k+3} + 3 \leq 2(-1)^{k+2} + 3(2^{k+1}) + 2 \), which is a contradiction to \(k \geq 2 \).

Case 2: The pebbles on \(x_k \) are required as well for the first \(t \)-pebbles.

If the pebbles on \(x_k \) are required for the first \(t \) pebbles, we transfer enough pebbles from \(x_k \) to \(A \) to put \(t \) pebbles on \(x_0 \). This costs at most \(t(2^k) - (2p_{k-1} + 2^2p_{k-2} + \cdots + 2^{k-1}p_1) \) pebbles from \(x_k \). If the pebbles of \(B \) are sufficient to put \(t \) additional pebbles then we are done. Otherwise, we can use the remaining pebbles on \(x_k \) along with the pebbles on \(B \cup \{x_{k+1}\} \) to put \(t \) additional pebbles on \(x_0 \). We can do this as long as

\[p_k - (t2^k - (2p_{k-1} + 2^2p_{k-2} + \cdots + 2^{k-1}p_1)) + 2p_{k+1} + 2^2p_{k+2} + \cdots + 2^{k-1}p_{2k} \geq t(2^{k+1}). \]
That is,

\[p_k + 2p_{k-1} + 2^2p_{k-2} + \cdots + 2^{k-1}p_1 \]
\[+ 2p_{k+1} + 2^2p_{k+2} + \cdots + 2^k p_{2k} \geq t(2^{k+1} + 2^k) \] \hspace{1cm} (3.7)

Also,

\[p_{k+2} + 2p_{k+3} + \cdots + 2^{k-2}p_{2k} \leq t(2^{k-1}) - 1. \]

That is,

\[-2p_{k+2} - 2^2p_{k+3} - \cdots - 2^{k-1}p_{2k} \geq -t(2^k) + 2 \] \hspace{1cm} (3.8)

Adding (3.7) and (3.8) we get,

\[2^{k-1}p_1 + 2^{k-2}p_2 + \cdots + 2^{2p_{k-2}} + 2p_{k-1} + p_k \]
\[+ 2p_{k+1} + 2p_{k+2} + 2^2p_{k+3} + \cdots + 2^{k-1}p_{2k} \geq t(2^{k+1}) + 2 \]

Applying Lemma 3.3.6, with \(S = \{x_k\} \), we see that the left side is at least \(p + q - 1 \).

But \(p + q \geq 2f_t(C_{2k+1}) + 1. \)

Hence it is enough to prove that

\[2f_t(C_{2k+1}) \geq t(2^{k+1}) + 2. \]

That is,

\[2 \left(\frac{2^{k+2} - (-1)^{k+2}}{3} + (t - 1)2^k \right) \geq t(2^{k+1}) + 2. \]

That is, \(2^{k+1} \geq 2(-1)^{k+2} + 6 \), which is true for all \(k \geq 2. \)
Hence if the pebbles on x_k are required for the first t pebbles then the remaining pebbles on x_k along with the pebbles of $B \cup \{x_{k+1}\}$ can be used to put t additional pebbles on x_0.

Otherwise, the pebbles of x_k along with the pebbles of A are sufficient to put $2(t-1)$ pebbles on x_0, and the remaining pebbles on x_k along with the pebbles of $B \cup \{x_{k+1}\}$ can be used to put two pebbles on x_0. That is, we keep moving pebbles from x_k to A till we get enough pebbles to put $2(t-1)$ pebbles on x_0 and it can be easily seen that the remaining pebbles on x_k along with the pebbles of $B \cup \{x_{k+1}\}$ can be used to put two pebbles on x_0. Hence the cycle C_{2k+1} satisfies the $2t$-pebbling property for all t where $k \geq 2$.

Hence we have proved that all cycles satisfy the $2t$-pebbling property. Thus it follows that all cycles satisfy the odd $2t$-pebbling property.

3.4 The t-pebbling conjecture of product of a path with a cycle

We now discuss some results on the t-pebbling number of direct product of two graphs. In direct product of two graphs we take the following notation from [9].

Notation 3.4.1 ([9]):

We write $\{x\} \times H$ (respectively $G \times \{y\}$) for the subgraph of vertices whose projection onto V_G is the vertex x (respectively whose projection onto V_H is y).

If the vertices of G are labeled x_i then for any distribution of pebbles on $G \times H$,
we write p_i for the number of pebbles on $\{x_i\} \times H$ and q_i for the number of occupied vertices of $\{x_i\} \times H$.

Chung [3] credited Conjecture 3.4.2 to Graham.

Conjecture 3.4.2 (Graham):
For any connected graphs G and H, we have $f(G \times H) \leq f(G)f(H)$ where $G \times H$ represents the direct product of graphs.

Lourdusamy [17] generalized Graham’s conjecture as follows:

Conjecture 3.4.3 (The t-pebbling Conjecture):
For any connected graphs G and H, we have $f_t(G \times H) \leq f(G)f_t(H)$ where $G \times H$ represents the direct product of graphs G and H.

We take Lemma 3.4.4 from [9]. It describes how many pebbles we can transfer from one copy of H to an adjacent copy of H in $G \times H$. It is also called transfer Lemma.

Lemma 3.4.4 (Transfer Lemma). Let (x_i, x_j) be an edge in G. Suppose that in $G \times H$, we have p_i pebbles occupying q_i vertices of $\{x_i\} \times H$. If $(q_i - 1) \leq k \leq p_i$ and if k and p_i have the same parity then k pebbles can be retained on $\{x_i\} \times H$ while moving $\frac{p_i - k}{2}$ pebbles onto $\{x_j\} \times H$. If k and p_i have opposite parity we must leave $k + 1$ pebbles on $\{x_i\} \times H$, so we can only move $\frac{p_i - (k + 1)}{2}$ pebbles onto $\{x_j\} \times H$. In particular we can always move at least $\frac{p_i - q_i}{2}$ pebbles onto $\{x_j\} \times H$.

In [17], Lourdusamy has proved that the t-pebbling conjecture is true for product of a path with a graph satisfying the $2t$-pebbling property.

We will now give his theorem with proof here, for easy reading of thesis.

Theorem 3.4.5 ([17]). Let P_m be a path on m vertices. When G satisfies the $2t$-pebbling property, $f_t(P_m \times G) \leq 2^{m-1} f_t(G)$.

Proof. Let $P_m = \{x_1, x_2, \ldots, x_m\}$ be a path on m vertices. The proof is by induction on m. For $m = 1$, theorem is trivial. Let $y \in G$.

Let (x_1, y) be the target vertex. By Lemma 3.4.4, we can transfer $\frac{p_m - q_m}{2}$ pebbles from $\{x_m\} \times G$ to $\{x_{m-1}\} \times G$. If $p_1 + p_2 + p_3 + \cdots + p_{m-1} + \frac{p_m - q_m}{2} \geq 2^{m-2} f_t(G)$, then we can use induction to put $f_t(G)$ pebbles on $\{x_1\} \times G$. We can then put t pebbles on (x_1, y) since $\{x_1\} \times G$ is isomorphic to G. Also, since G satisfies the $2t$-pebbling property, if $\frac{p_m + q_m}{2} > 2^{m-2} f_t(G)$, then we can put $t(2^{m-1})$ pebbles on (x_m, y) and then we can put t pebbles on (x_1, y) using the path P_{m-1}. Hence the only distributions from which we cannot t-pebble the target satisfy the inequalities

$$p_1 + p_2 + \cdots + p_{m-1} + \frac{p_m - q_m}{2} < 2^{m-2} f_t(G)$$

$$\frac{p_m + q_m}{2} < 2^{m-2} f_t(G)$$

But adding these together we get that $p_1 + p_2 + \cdots + p_m < 2^{m-1} f_t(G)$. Thus some configuration of pebbles from which we cannot t-pebble (x_1, y) must begin with fewer than $2^{m-1} f_t(G)$ pebbles. By symmetry, we can t-pebble (x_m, y) using any configuration of $2^{m-1} f_t(G)$ pebbles on $P_m \times G$.

Now let (x_i, y) be the target vertex for $i = 2$ to $m - 1$. Then without loss
of generality, there are at least $2^{m-2}f_t(G)$ pebbles on \{x_1, x_2, \ldots, x_{m-1}\} \times G$

(Otherwise there are at least $2^{m-2}f_t(G)$ pebbles on \{x_2, \ldots, x_m\} \times G). So by

induction we can t-pebble the target vertex.

\[\]

Corollary 3.4.6. Let P_m be a path on m vertices. Let C_n be a cycle on n

vertices. Then $f_t(P_m \times C_n) \leq 2^{m-1}f_t(C_n)$ for all t.

Proof. Follows from Theorem 3.3.8, Theorem 3.3.9, Theorem 3.3.10 and

Theorem 3.4.5

\[\]