TABLE OF CONTENTS

DECLARATION BY THE SCHOLAR

SUPERVISOR’S CERTIFICATE

ACKNOWLEDGEMENT

SYNOPSIS

LIST OF ACRONYMS AND ABBREVIATIONS

LIST OF SCHEMES

LIST OF FIGURES

LIST OF TABLES

LIST OF PUBLICATIONS

CHAPTER 1

INTRODUCTION 1-25

1.1 SURFACANTS

1.1.1 HISTORICAL BACKGROUND AND GLOBAL TREND 2

1.1.2 FUNDAMENTAL ASPECT, MECHANISM AND CHEMISTRY OF SURFACANT 4

1.2 DEFINITION, CLASSIFICATION AND SYNTHETIC ROUTES OF GEMINI SURFACANTS

1.2.1 ANIONIC GEMINI SURFACANTS 7

1.2.2 CATIONIC GEMINI SURFACANTS 10

1.2.3 NONIONIC GEMINI SURFACANTS 10

1.2.4 ZWITTERIONIC GEMINI SURFACANTS 11

1.3 PROPERTIES OF GEMINI SURFACANTS 12
3.2 EXPERIMENTAL SETUP AND METHODS 51

3.2.1 EXPERIMENTAL SETUP FOR THE PREPARATION OF BIS-SULFOSUCCINATE GEMINI SURFACTANTS 51

3.3 TECHNIQUES USED FOR INSTRUMENTAL ANALYSIS 54

3.3.1 FT-IR SPECTROSCOPIC TECHNIQUE 54

3.3.2 NMR SPECTROSCOPIC TECHNIQUE 55

3.3.3 ELEMENTAL ANALYSIS 56

3.4 EXPERIMENTAL DETAILS OF METHODS USED TO DETERMINE SURFACE PROPERTIES 56

3.4.1 INSTRUMENT’S DESCRIPTION 56

3.4.2 PROCEDURE 57

3.4.3 MEASUREMENTS OF SURFACE PROPERTIES 59

3.5 EXPERIMENTAL DETAILS TO DETERMINE FLUORESCENCE OR MICELLIZATION PROPERTIES 60

3.5.1 INSTRUMENT’S DESCRIPTION 60

3.5.2 PROCEDURE 62

3.5.3 MEASUREMENTS OF FLUORESCENCE OR MICELLIZATION PROPERTIES 65

3.6 METHODS USED TO DETERMINE PHYSICO-CHEMICAL OR PERFORMANCE PROPERTIES 66

CHAPTER 4

SYNTHESIS AND CHARACTERIZATION OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS 68-102

4.1 SYNTHESIS AND CHARACTERIZATION OF LAURYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS 70

4.1.1 SYNTHESIS OF LAURYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSLA’s) 70

4.1.2 CHARACTERIZATION OF LAURYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSLA’s) 74
4.2 SYNTHESIS AND CHARACTERIZATION OF MYRISTYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS

4.2.1 SYNTHESIS OF MYRISTYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSMA’s) 81

4.2.2 CHARACTERIZATION OF MYRISTYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSMA’s) 85

4.3 SYNTHESIS AND CHARACTERIZATION OF CETYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS

4.3.1 SYNTHESIS OF CETYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSCA’s) 91

4.3.2 CHARACTERIZATION OF CETYL ALCOHOL BASED BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSCA’s) 95

4.4 CONCLUSION OF THE CHAPTER 101

CHAPTER 5
SURFACE, FLUORESCENCE AND PHYSICO-CHEMICAL STUDIES OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS

5.1 SURFACE PROPERTIES OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSLA’s, BSGSMA’s and BSGSCA’s) 104

5.1.1 SURFACE TENSION AT THE CMC (γ_{CMC}) 104

5.1.2 CRITICAL MICELLE CONCENTRATION (CMC) 107

5.1.3 EFFICIENCY OF ADSORPTION OF SURFACTANT (C_{20}) 111

5.1.4 SURFACE PRESSURE AT THE CMC (π_{CMC}) 112

5.2 FLUORESCENCE OR MICELLIZATION PROPERTIES OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSLA’s, BSGSMA’s and BSGSCA’s) 113

5.2.1 AGGREGATION NUMBER 114
5.2.2 MICRO-POLARITY OR MICRO-ENVIRONMENT

5.3 PHYSICO-CHEMICAL PROPERTIES OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS (BSGSLA’s; BSGSMA’s and BSGSCA’s)
 5.3.1 FOAMING POWER
 5.3.2 EMULSIFICATION POWER

5.4 CONCLUSION OF THE CHAPTER

CHAPTER 6
SALT STUDIES OF ANIONIC BIS-SULFOSUCCINATE GEMINI SURFACTANTS
 6.1 EFFECT OF INORGANIC SALTS ON SURFACE PROPERTIES
 6.2 EFFECT OF ORGANIC SALTS ON SURFACE PROPERTIES
 6.3 EFFECT OF ELECTROLYTE NATURE ON SURFACE PROPERTIES
 6.4 EFFECT OF CONCENTRATION ON SURFACE PROPERTIES
 6.5 EFFECT OF SPACER GROUP WITH COUNTER-IONS ON SURFACE PROPERTIES
 6.6 EFFECT OF ALKYL CHAIN LENGTH WITH COUNTER-IONS ON SURFACE PROPERTIES
 6.7 CONCLUSION OF THE CHAPTER

CHAPTER 7
STUDIES OF BINARY MIXTURE OF BIS-SULFOSUCCINATE ANIONIC GEMINI SURFACTANTS WITH CONVENTIONAL SURFACTANTS
 7.1 CRITICAL MICELLE CONCENTRATION (CMC) OF PURE GEMINI SURFACTANTS (GS) VIZ. BSGSLA\(_{1,8}\); BSGSMA\(_{1,8}\); BSGSCA\(_{1,8}\)AND BINARY MIXED SURFACTANT SYSTEMS
7.2 MICCELLE AGGREGATION NUMBER (N) OF PURE GEMINI SURFACTANTS(GS) VIZ. BSGSLA\textsubscript{1,8} ; BSGSMAM\textsubscript{1,8} ; BSGSCA\textsubscript{1,8} AND BINARY MIXED SURFACTANT SYSTEMS

7.3 MICRO-ENVIRONMENT OR MICRO-POLARITY OF PURE GEMINI SURFACTANTS(GS) VIZ. BSGSLA\textsubscript{1,8} ; BSGSMAM\textsubscript{1,8} ; BSGSCA\textsubscript{1,8} AND BINARY MIXED SURFACTANT SYSTEMS

7.4 CONCLUSION OF THE CHAPTER

CHAPTER 8

CONCLUSIONS AND FUTURE SCOPE

8.1 CONCLUSIONS

8.2 SCIENTIFIC CONTRIBUTION OF PRESENT STUDY

8.3 FUTURE SCOPE

APPENDIX

APPENDIX A: FT-IR, 1H-NMR AND 13C-NMR OF ALL SYNTHESIZED GEMINI SURFACTANTS

APPENDIX B: PLOTS OF FLUORESCENCE INTENSITY WITH QUENCHER CONCENTRATION FOR PREPARED GEMINIS

APPENDIX C: SURFACE TENSION VERSUS SURFACTANT CONCENTRATION PROFILES OF ALL PREPARED GEMINI SURFACTANTS

APPENDIX D: PLOTS OF FLUORESCENCE INTENSITY WITH QUENCHER CONCENTRATION FOR BINARY MIXED STUDY

REFERENCES