LIST of Figures

Figure 1.1: Schematic diagram of scaling Method on MOSFET. 2

Figure 1.2: The Schematic Band Diagram for Thin SiO$_2$ MOS Capacitor. 4

Figure 1.3: Suppression of the direct tunnel leakage current by introducing a high-k gate oxide. 5

Figure 1.4: J_g vs. EOT curves showing scalability of high-k dielectrics with metal gates in comparison to SiO$_2$ with poly gates. 6

Figure 1.5: Schematic of band offsets determining carrier injection in oxide band states. 8

Figure 1.6: Comparison of effective mobility with Hf-based oxide and SiO$_2$. 9

Figure 1.7: Possible sources for mobility reduction in high-k gate MOSFET. 10

Figure 1.8: Cross sectional TEM images of transistors showing gate length for various technology nodes. Alternative channel materials such as CNT, Nanowires and III-V based devices are being actively researched for future technology nodes. 11

Figure 1.9: Unit cube of GaAs crystal lattice. 13

Figure 1.10: Energy band structure of Si and GaAs. 15

Figure 1.11: Drift velocity of electrons in GaAs and Si as a function of the electric field. 17

Figure 1.12: Fermi level pinning and energy band diagrams. 20

Figure 2.1: Interactions with incident ions at the target surface. 33

Figure 2.2: Schematic diagram for RF magnetron sputtering system. 34
Figure 2.3: Schematic diagram for Rapid Thermal Annealing (RTA) MILA-3000.

Figure 2.4: Schematic diagram of Hind Hivac thermal evaporation System.

Figure 2.5: Schematic of the DC Sputtering Chamber.

Figure 2.6: Schematic drawing of XPS system.

Figure 2.7: Energy-level diagrams showing the electron transitions in XPS.

Figure 2.8: Schematic depiction of SIMS source region.

Figure 2.9: A schematic diagram of an AFM system.

Figure 2.10: Schematic cross section of TEM.

Figure 3.1: Crystal structure of HfO₂, (a) monoclinic, (b) tetragonal, and, (c) cubic.

Figure 3.2: Process step for the fabrication of (a) TaN/HfO₂/Si/p-GaAs and (b) Al/HfOₓNᵧ/p-GaAs MOS capacitors.

Figure 3.3: 3-D AFM images of HfO₂ layers with different thickness. EOT of (a) 2.4 nm (b) 2.9nm (c) 3.4nm and (d) 3.8 nm HfO₂/GaAs gate stack. The size of all images is 0.5 × 0.5 μm²

Figure 3.4: C-V characteristics of TaN/HfO₂/Si/p-GaAs MOS capacitors with different thickness of HfO₂.

Figure 3.5: (a) Gate leakage current density (Jₘ) at V FB - 1 V versus EOT. For comparison, reported data on high-κ on Si is also plotted together and (b) EOT variation with HfO₂ physical thickness.

Figure 3.6: SILC at V FB-1V after CCS at 20 μA and CVS 4 V with different thickness of HfO₂.
Figure 3.7: The flat band voltage shift of TaN/HfO$_2$/Si/p-GaAs MOS capacitors after CCS at 20 µA and CVS 4 V with different thickness of HfO$_2$.

Figure 3.8: Schematic voltage ramp stress with intermediate monitoring step for verification of the dielectric breakdown of applied ramp voltage to MIS capacitors.

Figure 3.9: Schematic of the generation of permanent positive oxide-trapped charge in electric-field enhanced breakdown model.

Figure 3.10: Weibull distribution w.r.t. breakdown field TaN/HfO$_2$/Si/p-GaAs for different EOT.

Figure 3.11: XPS spectra of Hf4f for thin HfO$_x$N$_y$/GaAs gate stacks of as-deposited and annealed sample at different PDA temperature for 1 min in N$_2$ ambient. Spectra were recorded using AlK$_\alpha$ radiation and a take-off angle of 45°.

Figure 3.12: N 1s spectra for HfO$_x$N$_y$/GaAs gate stacks of as-deposited and annealed sample at different PDA temperature for 1 min in N$_2$ ambient.

Figure 3.13: XPS spectra of As3d$_{5/2}$ for HfO$_x$Ny on p-GaAs for as-deposited and annealed sample at different PDA temperature for 1 min in an N$_2$ ambient.

Figure 3.14: C-V characteristics of GaAs MOS capacitor at 100 kHz for HfO$_x$N$_y$ gate dielectric on p-type GaAs under various PDA temperatures.

Figure 3.15: C-V frequency dispersion characteristic of GaAs MOS capacitor for three different PDA temperatures.

Figure 3.16: Frequency dispersion characteristics for the MOS capacitors as a function of annealing condition, (a) percentage and (b) ΔV.

Figure 3.17: Energy distribution of density of interface states under different post deposition annealing temperature.
Figure 3.18: (a) Hysteresis characteristics of HfO$_x$N$_y$/p-GaAs gate stack for 400 °C PDA temperature. Inset (a) shows hysteresis characteristics for the same gate stacks for asdeposited sample. (b) Border trap density (N$_{bt}$) as a function of PDA temperature.

Figure 3.19: (a) J–V characteristics of HfO$_x$N$_y$ on p-GaAs for different PDA temperatures and (b) variation of current density and EOT with PDA temperatures for HfO$_x$N$_y$ on p-GaAs.

Figure 3.20: The charge trapping induced flatband voltage (ΔV_{fb}) shift of annealed samples as a function of stress time under contact voltage stressing.

Figure 3.21: Interface trap density (D$_{it}$) after constant voltage stressing as a function of stress time of annealed samples.

Figure 3.22: SILC [(J$_g$ –J$_0$)/J$_0$] under constant voltage condition as a function of stress time for annealed samples.

Figure 3.23: (a) Variation of fixed oxide charge density, Q$_f$ as a function of stress time at a constant current stressing of -20 µA with different post deposition annealing conditions. (b) Variation of SILC as a function of injected fluence, N$_{inj}$ under CCS at -20µA for annealed samples.

Figure 4.1: Core-level XPS spectra of Hf 4f, Ta 4f and Ti 2p from the HfTaTiO$_x$/GaAs structure before Ar$^+$ sputtering.

Figure 4.2: Core-level XPS spectra of Hf4f from HfTaO$_x$/GaAs and HfTaTiO$_x$/GaAs structure before and after Ar$^+$ ion sputtering.

Figure 4.3: (a) As 3d high resolution XP spectra for HfTaO$_x$/GaAs and HfTaTiO$_x$/GaAs structure before Ar$^+$ sputtering. (b) Core-level XPS spectra of Ga2p from HfTaO$_x$/GaAs and HfTaTiO$_x$/GaAs structure before (inset) and after Ar$^+$ sputtering.

Figure 4.4: O 1s photoelectron spectrum measured from HfTaO$_x$/GaAs and HfTaTiO$_x$/GaAs structure.
Figure 4.5: VB spectra of HfTaO$_x$, HfTaTiO$_x$ and GaAs substrate were observed at an angle of 90°.

Figure 4.6: 3-D AFM images of (a) HfTiTaO$_x$/GaAs and (b) HfTaO$_x$/GaAs gate stack. The size of all images is 0.5 × 0.5 μm2.

Figure 4.7: Fig. 1. C–V frequency dispersion characteristics of HfTiTaO$_x$ and HfTaO$_x$ film on (a) p-GaAs and (b) n-GaAs substrates. Frequency range is in between 20 kHz to 200 kHz. The area of MOS capacitor is 10$^{-4}$ cm2.

Figure 4.8: C–V high frequency (100 kHz) hysteresis characteristic for HfTiTaO$_x$ and HfTaO$_x$ film on (a) p-GaAs and (b) n-GaAs substrates.

Figure 4.9: Current density-voltage characteristics of HfTaO$_x$ and HfTiTaO$_x$ gate stacks on p and n-type GaAs.

Figure 4.10: Capacitance-voltage plot of MOS capacitor with HfTiTaO$_x$ dielectric on sulfur-passivated GaAs in as-deposited condition. The gate area of the MOS capacitor is x10$^{-4}$ cm2.

Figure 4.11: Capacitance-voltage characteristics of MOS capacitors on GaAs with HfTiTaO$_x$ dielectric and different PDA conditions using RTA a) 400 °C, 60 s, b) 500 °C, 60 s and c) 600 °C, 60 s. Also shown is the hysteresis curve at 100 kHz frequency. The gate area of the MOS capacitor is 2.5x10$^{-4}$ cm2.

Figure 4.12: Gate leakage current density versus gate voltage characteristics of MOS capacitors on GaAs with HfTiTaO$_x$ dielectric and different PDA conditions using PDA at 400 °C, 500 °C and 600 °C.

Figure 5.1: Crystal structure of La$_2$O$_3$.

Figure 5.2: Fabrication process of Al/La$_2$O$_3$/Si/GaAs capacitors.

Figure 5.3: XPS (a) O 1s core level, (b) La 3d core level spectra of La$_2$O$_3$/p-GaAs gate stack with annealed at 400 °C and 500 °C and without Si IPL annealed at 500 °C, and (c) Si 2p spectra of La$_2$O$_3$/p-GaAs gate stack with Si IPL annealed at 400 °C and 500 °C.
Figure 5.4: XPS (a) Ga 3d and (b) As 3d spectra of La$_2$O$_3$ gate stack deposited on p-GaAs without Si IPL annealed at 500 °C and with Si IPL annealed at 400 °C and 500 °C for 1 min in N$_2$ ambient.

Figure 5.5: O 1s photoelectron spectrum measured from La$_2$O$_3$/GaAs and La$_2$O$_3$/Si /GaAs structures under different PDA temperature.

Figure 5.6: XPS intensity for (a) Ga 2p, (b) La 3d, and (c) Si 2p along with La 4d at different depth after different Ar$^+$ sputter time.

Figure 5.7: ToF-SIMS profiles of (a) La$_2$O$_3$/GaAs, and (b) La$_2$O$_3$/Si /GaAs structures under PDA at 500 °C.

Figure 5.8: Combination of HRTEM and SIMS profile of La$_2$O$_3$/LSO/GaAs structures under PDA at 500 °C.

Figure 5.9: 3-D AFM images of La$_2$O$_3$ layers with and with Si IPL layer and annealed at different temperatures. (a)La$_2$O$_3$/P-GaAs, PDA at 500 °C, (b) As-deposited, (c) PDA at 400 °C, (d) PDA at 500 °C, (e) PDA at 600 °C, for La$_2$O$_3$/Si/GaAs gate stack. The size of all images is 0.5 × 0.5 μm2.

Figure 5.10: (a) C-V characteristics of La$_2$O$_3$/p-GaAs gate stack with and without Si IPL (b) frequency dispersion characteristics for the La$_2$O$_3$/Si gate stacks under PDA at 500 °C, (inset) frequency dispersion characteristics of La$_2$O$_3$/p-GaAs gate stack with and without Si IPL for different PDA temperature.

Figure 5.11: Variation of hysteresis voltage and border traps density with different PDA temperatures and (inset) interface trap density (D_{it}) variation throughout the trap energy level to valance band of GaAs for various PDA temperature.

Figure 5.12: 100 kHz C-V response with varying temperature (RT to 200 °C) of La$_2$O$_3$/ Si gate stacks under PDA at 500 °C. The average percentage capacitance dispersions per 25 °C step of the temperature at V_{gate}= 4 V is 16.5%.
Figure 5.13: (a) Leakage current density vs. voltage characteristics of La$_2$O$_3$ and La$_2$O$_3$/Si gate stacks on p-GaAs as a function of various PDA temperatures (b) current density at V_{fb}=1 V vs. EOT. For comparison, reported data on high-k/Si and SiO$_2$/Si are also plotted together.

Figure 5.14: The charge trapping induced flatband voltage (ΔV_{fb}) shift of different annealed sample as a function of stress time under CVS at ±4 V.

Figure 6.1: XPS core level spectra of (a) Ti 2p (from (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs) and Ta 4f (from (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs) (b) Y 3d core level spectra, (c) O 1s and Y 3p (inset) core level spectra.

Figure 6.2: Comparison of (a) Ga 3d, (b) As 3d and (c) Ga 2p core level spectra from interface of (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs and (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs.

Figure 6.3: O 1s photoelectron spectrum measured from (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs and (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack.

Figure 6.4: Capacitance-voltage (C-V) characteristics of GaAs MOS capacitor at 100 kHz with Y$_2$O$_3$/GaAs, (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs, and (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack on p-GaAs. (Inset) shows hysteresis characteristics for the same gate stacks.

Figure 6.5: Frequency dispersion in C-V characteristics between 50 and 500 kHz for (a) Y$_2$O$_3$/GaAs (b) (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs and (c) (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stacks.(d) summery of frequency dispersion in accumulation (in percent %) and depletion (ΔmV) for different high-κ on GaAs.

Figure 6.6: Energy distribution of density of interface states of GaAs MOS capacitor with Y$_2$O$_3$/GaAs, (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs, and (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack.

Figure 6.7: Comparison of Leakage current density at V_{fb}=1 V with applied bias for Y$_2$O$_3$/GaAs, (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs, and (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack.
Figure 6.8: Gate leakage current versus stressing time for different constant voltage stress bias for Y$_2$O$_3$/GaAs GaAs gate stack. Details of the I–t characteristics shown for applied voltages 2 V and 2.5 V.

Figure 6.9: Gate leakage current versus stressing time for different constant voltage stress bias for, (a) (Ta$_2$O$_5$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack, and (b) (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs gate stack. Details of the I–t characteristics shown separately for applied voltages 2 V and 2.5 V for (TiO$_2$)$_{1-x}$(Y$_2$O$_3$)$_x$/GaAs.