Review of Literature
Milk is a very important supplement for nutrition. A number of productions are manufactured from milk, which are of great industrial significance. Khoa is one such product where milk is concentrated to a semi solid form. Khoa is in general divided into three varieties depending upon the texture and shape. These are Pindi, Dhap and Danedar. Pindi has a characteristics shape given by a metallic mould while Dhap is not having any shape but acquires its shape due to its viscosity while Danedar is prepared from milk slightly acidic in nature. Garg et.al; (1989) worked on Textural changes in Khoa during holding. They specially worked on the moisture content of Khoa in relation to its texture and shape acquired the post manufacture processes. Gothwal and Bhavdasan (1992), studied on the browning characteristics of the dairy products. Patel and Sukumar (1976) worked on the
standardization methods of Khoa powder to increase the keeping quality. Jail khani et.al.; (1979), worked on the utilization of goat milk for Khoa making. In which they used different proportion of goat and buffalo milk for Khoa making and studied the physical quality and provides the Khoa ratio for acceptability. Narin and Singh (1979) worked on the qualities of Khoa marketed in Varanasi city. These samples were examined for general appearance, texture, flavor, moisture, fat, protein lactose etc. Review article on the technology of Khoa making and its chemical composition have been published by Rajohria and Srinivasn (1979). They mentioned about the chemical composition and microbial quality of Khoa obtained from different places. Ramanna et.al.; (1982) worked on large-scale preparation and preservation of milk burfi. Patil et.al.; (1990) worked on the sensory, texture of Khoa giving it a statistical approach. Reddi & Rajorhia (1990) indicated that an equilibrium of relative humidity of 70% for burfi sample. Its moisture content of 15% for optimum for storage at 30°C. Patel (1991) descried the current status of Khoa, manufacturing industry its special reference to its shelf life. Patil et.al.; (1992) described the effect of concentration conditions of the texture of Khoa. Upadhayay et.al.; (1993) described the manufacturing conditions of Khoa making with special reference to the commercial exploitation. Sawhney (1994) evaluated glycerol as modifier in Khoa. Jadhav et.al.; (1990) made observation on the dehydration of heat induced milk foam for Khoa making. Rajorhia (2002) described about the opportunities in production of Khoa and described the innovative technology for making Khoa powder. Madhav Rao et.al.; (2003) studied on standardization methods for milk cake production. The work on the biochemical parameters of Khoa has been the subject of study since the late seventies. But yet the biochemical standards could not be established due to the variation in the quality of milk and the type of milk adulterated.
for Khoa making. Zariwala *et al.* (1973) made a market survey of chemical quality of Khoa samples collected from the market of Bombay. Rajorhia and Srinivasan (1979) gave review article and the method of manufacture, chemical composition and microbial quality of Khoa. Narayan and Singh (1979) gave the quality of Khoa marketed in Varanasi with various physical and biochemical properties. Similarly Ghatak and Bandyopathay (1989) give the chemical quality and the physical quality of Khoa marketed at Calcutta. Dinakar and Sharma (1989) worked on the efficacy of formalin in preservation of Khoa samples. Rajorhia *et al.* (1990) studied the effect of quality of milk on chemical, sensory and rheological properties of Khoa. Sindhu *et al.* (2000) gave a review on the physico chemical aspect of indigenous dairy products and covered the concentration products of Khoa and Khoa based sweets. Aneja (1992) reported that Khoa contain 22 to 25% moisture, 25 to 37% fat, 17 to 20% protein, 20 to 25% lactose, 3.6 to 3.8% ash, 100 to 103 ppm iron. Depending on its preparation cow, buffalo or mixed milk. The quality of Khoa is better than made from buffalo milk from that of cow milk which is inferior due to its moist surface sticky and sandy texture. The higher emulsifying capacity of buffalo milk fat is due to the presence of large proportion of butyric acid containing triglycerides which is 50% compared to only 37% in cow milk fat according to Sindhu (1996) Dewani and Jai Prakash (2002) worked on the effect of the addition of whey protein concentration on physico-chemical and sensory characteristics of Khoa.

Boghra and Mathur (1990) analyzed the mineral components of Khoa from cow and buffalo milk. They found citrate, sodium, potassium, chlorine, copper and iron as a maximum level during storage for thirty days below 10°C. Soluble citrate, calcium, phosphorous and citrate
decreased, chlorine, copper and iron increased. While the rest showed little or more change. Soluble copper and iron percentage were co-related with lipolytic and oxidative changes in Khoa during storage. In (1991) they again examined Khoa samples of Karnal and found that Khoa contains calcium 655.00 magnesium 66.67, phosphorous 376.55, citrate 517.86, sodium 182.88, potassium 366.00, chloride 331.65, copper 0.16, iron 2.43 and zinc 2.43 milligrams per hundred grams.

The vitamins present in milk are lost during the processing of Khoa preparation. The vitamins present in milk and Khoa has been worked by Sapre and Deodhar (1988). The amount of vitamin A found in milk Dhap and Khoa was as under : Retinol 0.28, 0.24 and 0.22 milligram, Riboflavin 1.38, 1.03 and 0.98 milligram, Vitamin B₆ 0.16, 0.14 and 0.13 milligrams, Folic acid 1.31, 1.15 and 1.06 milligrams micrograms and ascorbic acid 11.36, 8.77 and 8.46 milligrams. The vitamins lost during processing were 18.8% for Retinol, 27.8 % for Riboflavin, 19.4% for vitamin B₆ 18.4% for Folic acid and 25.4 % for ascorbic acid. Sharma et.al.; (1999) studied the changes in same water-soluble vitamins during preparation and storage of Khoa. The losses in the vitamin percentage was found to be more than that reported by Sapre and Deodhar (1988). The losses in vitamin B₂ and vitamin C stored under light were 16.35 and 8.16 respectively but when stored in the dark has loss of 1.37 and 4.26 % the other vitamins were not affected by storage of the product under light.

The analysis of microbiological quality of Khoa, burfi and pera was studied by Ghodeker et.al.; (1974). In which they found average bacteriological count was good, fair and poor variety of Khoa. As 5000, 148000 and 11 million per grams. The percentage incidences of various groups were micrococci 23.01, sarcina 7.12, Staphylococcus 9.31, Bacilli
the dominant isolates. Chavan and Kulkarni (2007) studied the influence of microwave heating and the microbial quality of Khoa.

Material & Methods