CONTENTS

Preface i
List of Abbreviations iv
List of Figures v
List of Tables xiii

Chapter 1

Introduction

1.1 Introduction 01
1.2 The structure of the neutral atmosphere 02
1.3 Ionosphere 06
1.4 Electrical conductivity of the ionosphere 10
1.5 Equatorial Electrojet and Counter Electrojet 16
1.6 F region Dynamo 16
1.7 Equatorial Ionization Anomaly 20
1.8 Ionospheric irregularities 23
1.9 E region irregularities 24
1.10 F region irregularities 27
1.11 Scintillation 28
1.12 Geomagnetic Storm 31
1.13 Aim of the present study 33

Chapter 2

Experimental Techniques

2.1 Introduction 34
2.2 Radio wave propagation from the ionosphere 35
2.3 TEC measurement techniques 38
2.3.1 GPS technique for TEC and scintillation measurements 39
2.3.2 GISTM GSV4004B receiver 42
2.3.3 Other TEC measurement techniques
 (i) Faraday Rotation 47
 (ii) Differential Phase 48
 (iii) Group Delay 49
2.4 VHF coherent back scatter Radar technique 50
 2.4.1 Principle of Coherent backscatter 52
 2.4.2 VHF coherent back scatter radar at Gadanki, India 54
2.5 Ionosonde 57
 2.5.1 Principle of ionosonde 58
 2.5.2 KEL IPS-42 ionosonde system 60
2.6 Other techniques
 2.6.1 In situ measurements 61
 2.6.2 TIMED satellite 62
 2.6.3 Optical techniques 63
2.7 Summary 65

Chapter 3
TEC variations during low solar activity period (2005-2009) near the EIA crest region in India

3.1 Introduction 67
3.2 Historical background 67
3.3 Diurnal variations of TEC 69
3.4 Seasonal variations of TEC 73
3.5 Solar activity dependence of TEC 77
3.6 EEJ control on development of EIA 79
3.7 EEJ control on low latitude TEC 81
3.8 Low Latitude L-band scintillation and associated TEC depletion 85
3.9 Conclusion 90
Chapter 4

A Multitechnique investigation on ESF irregularities

4.1 Introduction 92
4.2 Historical background 100
4.3 Experimental Setup 104
4.4 A case study to understand an evolution and dynamics of ESF
 4.4.1 Observations from the magnetic equator (Trivandrum) 106
 4.4.2 Observations from the low latitude (Gadanki) 106
4.5 TEC enhancement during multiple ESF plume structures 116
4.6 A case study to understand the latitudinal extent of L-band scintillation 121
4.7 Solar activity dependence of L-band scintillation 132
4.8 Conclusion 137

Chapter 5

Low Latitude ionospheric-thermospheric response to storm time electrodynamical coupling between high and low latitudes

5.1 Introduction 139
5.2 Historical background 141
5.3 Data and Method of analysis 144
5.4 Storm of 15 May 2005 146
 5.4.1 TEC enhancements on the day preceding the occurrence of SSC 149
 5.4.1 Positive ionospheric storm on 15-16 May 2005 153
 5.4.2 Negative ionospheric storm on 17 May 2005 164
 5.4.3 Local time dependent response of ESF/Scintillations 167
5.5 Storm of 24 August 2005
 5.5.1 Low Latitude ionospheric - thermospheric behavior during 24-27 August 2005 175