Contents

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgment</td>
<td>i</td>
</tr>
<tr>
<td>Preface</td>
<td>ii</td>
</tr>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1-21</td>
</tr>
<tr>
<td>1.1 Environmental Pollution - The Indian Perspective</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Water-A Dwindling Resource</td>
<td>3</td>
</tr>
<tr>
<td>1.3 Environmental Pollution Adding to the Problem</td>
<td>4</td>
</tr>
<tr>
<td>1.4 Textile Dyes</td>
<td>8</td>
</tr>
<tr>
<td>1.4.1 Textile dyes and their classifications</td>
<td>8</td>
</tr>
<tr>
<td>1.5 Major Pollutants Released from Textile and Dye Industry</td>
<td>9</td>
</tr>
<tr>
<td>1.6 Treatment of Textile Dye Effluents</td>
<td>10</td>
</tr>
<tr>
<td>1.7 Objectives of Our Research Programme</td>
<td>12</td>
</tr>
<tr>
<td>List of Tables</td>
<td>14</td>
</tr>
<tr>
<td>References</td>
<td>15</td>
</tr>
<tr>
<td>Tables</td>
<td>16</td>
</tr>
<tr>
<td>Figure</td>
<td>21</td>
</tr>
<tr>
<td>Chapter 2: Literature Survey</td>
<td>22-83</td>
</tr>
<tr>
<td>2.1 General</td>
<td>22</td>
</tr>
<tr>
<td>2.2 Dyes and Wastewater Containing Dye</td>
<td>22</td>
</tr>
<tr>
<td>2.3 Adsorption Mechanisms</td>
<td>30</td>
</tr>
<tr>
<td>2.4 Studies an Activated Carbon</td>
<td>37</td>
</tr>
<tr>
<td>2.5 Polymeric Adsorbents</td>
<td>43</td>
</tr>
<tr>
<td>2.6 Agriculture Wastes</td>
<td>47</td>
</tr>
<tr>
<td>2.7 Biosorption and Biodegradation</td>
<td>55</td>
</tr>
</tbody>
</table>
Chapter 4: Colour Removal by Lime Dosing Methods

4.1 Introduction

4.2 Literature survey

4.3 Objectives

4.4 Materials

4.5 Work Plan

4.6 Experimental Procedure

4.7 Results and Discussion

4.7.1 Effect of addition of alum into aqueous auramine solution

4.7.2 Effect of addition of lime into aqueous auramine solution

4.7.3 Effect of the quantity of lime dosed on auramine removal

4.7.4 Effect of stirring time on auramine removal (fixed lime dosing)

4.7.5 Removal of auramine in quiescent medium

4.7.6 Removal of auramine by lime dosing from saturated aqueous solution containing sodium chloride

4.7.7 Removal of auramine from plant wastewater by lime dosing

4.7.8 Treatment of the effluent from lime dosing by activated carbon

4.7.9 Removal of red 13 by lime dosing

4.8 Conclusion

List of Tables

List of Figures

Nomenclature, Abbreviations

References

Tables

Figures
Chapter 5: Adsorption of Dye from Dye Solution onto Activated Carbon by Batch Process

5.1 Introduction

5.2 Objective of the Adsorption Experiments

5.3 Materials

5.4 Experimental Procedure

5.5 Results

5.5.1 Effect of contact time and initial dye concentration on the degree of removal

5.5.2 Effect of carbon loading

5.5.3 Effect of temperature

5.5.4 Effect of salt

5.5.5 Effect of pH

5.5.6 Effect of particle size

5.5.7 Effect of stirring speed

5.6 Mechanism Involved in the Adsorption Process

5.6.1 Adsorption theories

5.6.2 Adsorption isotherms

5.6.2.1 BET (Brunauer, Emmett and Teller) model

5.6.2.2 Langmuir isotherm

5.6.2.3 Freundlich isotherm

5.7 Isotherms for Auramine-Activated Carbon System

5.7.1 Freundlich isotherm

5.7.2 Redlich-Peterson models

5.7.3 Langmuir isotherm

5.8 Shape of Isotherms

5.9 Effect of pH on Freundlich and Langmuir Constant

5.10 Effect of Temperature on Freundlich and Langmuir Constant

5.11 Enthalpy of Adsorption

5.12 Adsorption Kinetics

5.13 Conclusion
Chapter 6: Dye Removal by Low Cost Adsorbent (Bleaching Earth) 204-255

6.1 Introduction 234
6.2 Materials 237
6.3 Experimental Procedure 237
6.4 Results and Discussion 238
 6.4.1 Equilibrium time determination 238
 6.4.2 Effect of initial dye concentration on adsorption 239
 6.4.3 Effect of loading 239
 6.4.4 Adsorption isotherms 240
 6.4.5 Effect of pH 240
 6.4.6 Effect of temperature 242
 6.4.7 Adsorption kinetics 242
6.5 Conclusion 219

Appendix 220
List of Tables 221
List of Figures 223
Nomenclature 225
References 228
Tables 230
Figures 243
Chapter 7: Comparative Study of Colour Removal from Textile Effluent Using Two Adsorbents - Activated Carbon and Bleaching Earth

List of Tables 256
List of Figures 257
Nomenclature 258
References 259
Tables 260
Figures 261

Chapter 8: Regeneration of Spent Adsorbent

8.1 Regeneration of Spent Carbon by Chemical Treatment 274
8.2 Objective 275
8.3 Apparatus 275
8.4 Regeneration of Loaded Activated Carbon 275
8.5 Theoretical Background 276
8.6 Preparation of Spent Activated Carbon 277
8.7 Regeneration by Hydrogen Peroxide 278
8.8 Regeneration by UV/Hydrogen Peroxide 278
8.9 Experimental Procedure for Regeneration by UV/Hydrogen Peroxide 279
8.10 Results and Discussion 279
8.10.1 Effect of temperature on regeneration of activated carbon (UV/H\textsubscript{2}O\textsubscript{2} method) 280
8.10.2 Kinetics of regeneration 280
8.10.3 Effect of Hydrogen peroxide concentration 280
8.11 Regeneration of Loaded Bleaching Earth 285
8.12 Conclusion 286
List of Tables 287
List of Figures 288
Nomenclature 289

xi