V. LIST OF TABLES AND FIGURES

List of Tables:

1.1 Material properties of Si, GaAs, InP and important Wide Bandgap semiconductors. I-7
1.2 Figure of Merits of different semiconductors in comparison to Si. I-8
3.1 Si based DDR IMPATT for CW operation at 94.0 GHz window frequency: Comparison of simulation results with experimental published data III-22
3.2 Si based DDR IMPATT for CW operation at 140.0 GHz window frequency: Comparison of simulation results with experimental published data. III-22
4.1 Material parameters (input data) of Si and 4H-SiC IMPATT diodes, considered in the analysis. IV-6
4.2 Design data of Si and 4H-SiC SDR IMPATTs at Ka-band. IV-16
4.3 DC and Small-Signal properties of Si and 4H-SiC based SDR IMPATTs at Ka-band. IV-16
4.4 Design data of 4H-SiC based flat profile DDR IMPATT diodes at Ka-band, D-band and Y-band. IV-20
4.5 DC and Small-Signal properties of 4H-SiC DDR IMPATTs at MM-wave window frequencies. IV-21
4.6 Effects of optical illumination on SDR flat IMPATT diodes at Ka-band. IV-32
4.7 Effects of optical illumination on DDR flat IMPATT diodes at MM-wave window frequencies. IV-34
4.8 Design parameters of 4H-SiC SLHL SDR IMPATT at Ka-band. IV-47
4.9 Comparative analysis of flat and SLHL types SDR IMPATT diodes based on 4H-SiC. IV-47
4.10 Design parameters of 4H-SiC based SLHL DDR diodes at MM-wave windows. IV-56
4.11 Comparative analysis of DC and small-signal properties of DDR flat and SLHL IMPATT diodes at MM-wave window frequencies. IV-56
4.12 Comparative analysis of photo-sensitivity of 4H-SiC based flat and SLHL SDR IMPATT diodes at Ka-band. IV-67
4.13 Comparative analysis of photo-sensitivity of 4H-SiC based flat and SLHL DDR IMPATT diodes at Ka-band. IV-68
4.14 Comparative analysis of photo-sensitivity of 4H-SiC based flat and SLHL DDR IMPATT diodes at D-Band. IV-69
5.1 Material parameters (input data) of 4H-SiC and 6H-SiC, considered in the analysis. V-9
5.2 Design parameters of the THz 4H-SiC based IMPATT diodes. V-17
5.3 DC and Small-signal results of 4H-SiC based THz IMPATTs. V-17
5.4 Estimation of Series resistance of the THz IMPATTs. V-18
5.5 (a) Effects of optical illumination on 4H-SiC based IMPATT at 0.3 THz. V-36
5.5 (b) Effects of optical illumination on 4H-SiC based IMPATT at 0.5 THz. V-39
5.5 (c) Effects of optical illumination on 4H-SiC based IMPATT at 0.7 THz. V-42
5.5 (d) Effects of optical illumination on 4H-SiC based IMPATT at 1.8 THz. V-49
5.6 Design Parameters of 6H-SiC THz IMPATT diodes. V-54
5.7 DC and Small-Signal properties of 6H-SiC based THz IMPATT diodes. V-55
5.8 Estimation of series resistance of the 6H-SiC based IMPATTs at THz region.

5.9 (a) Effects of optical illumination on 6H-SiC based IMPATTs at 0.3 THz.

5.9 (b) Effects of optical illumination on 6H-SiC based IMPATTs at 1.8 THz.

5.10 DC and High frequency properties of 4H-SiC and 6H-SiC based THz diodes at elevated temperature.

5.11 Estimation of series resistance of the 4H-SiC and 6H-SiC based THz IMPATTs at elevated Temperature.

5.12 Effects of optical illumination on 4H-SiC and 6H-SiC based THz IMPATTs at elevated temperature.

5.13 Design parameters of 4H-SiC based 0.5 THz Quasi Read IMPATT.

5.14 DC and High frequency properties of 4H-SiC based flat and Quasi-Read types 0.5 THz IMPATTs.

5.15 Estimation of series resistance of 4H-SiC based Lo-Hi-Lo IMPATT at 0.5 THz.

5.16 Effects of optical illumination on 4H-SiC based THz (0.5 THz) IMPATT diodes (flat and Lo-Hi-Lo).

6.1 Material parameters (input data) of Si and WZ-GaN IMPATT diodes, Considered in the analysis (300K < T < 600K).

6.2 Design data of Si and GaN based SDR IMPATTs at D-band.

6.3 DC and Small-Signal properties of Si and GaN based SDR IMPATTs at D-band.

6.4 Design data of GaN based flat profile SDR IMPATT diodes at THz Region.

6.5 DC and Small-Signal properties of GaN SDR IMPATTs at THz region.

6.6 Values of series resistance (R_s) and load conductance (G_L) at oscillation threshold (resonance) of GaN SDR IMPATT.

6.7 Design data of GaN based SLHL SDR IMPATT diode at THz Region.

6.8 DC and small-signal results of GaN based SLHL SDR IMPATT diode at THz Region.

6.9 Values of series resistance (R_s) and load conductance (G_L) at oscillation threshold (resonance) of GaN SDR SLHL IMPATT [frequency = 1.11 THz].

6.10 Variations of small signal parameters of MM-wave GaN SDR IMPATT diode under photo-illumination (values are reported at peak operating frequencies).

6.11 Variations of small signal parameters of GaN SDR IMPATT diode under photo-illumination (values are reported at peak operating frequencies).

6.12 Variations of small-signal properties of GaN SDR IMPATT diodes under photo-illumination (values are reported at peak operating frequencies).

6.13 Design data of GaN and SiC based flat profile SDR IMPATT diode at THz Region.

6.14 DC and small-signal results of GaN and SiC based SDR IMPATT diode at THz Region.

6.15 Values of series resistance (R_s) and load conductance (G_L) at oscillation threshold (resonance) of GaN and SiC SDR IMPATT [bias current density = 3.2 x10^9 Am^-2 and frequency = 1.0 THz].
6.16 Variations of small signal parameters of GaN and SiC SDR IMPATT diodes due to photo-illumination (values are reported at peak operating frequencies).

7.1 Design data of GaN DDR IMPATT having different doping concentration in the THz region.
7.2 Effects of punch-through on DC and small-signal properties of GaN THz devices (Data are reported at their corresponding optimum frequencies).
7.3 Effect of Punch through on series resistance of the GaN DDR IMPATTs in the THz (1.8 THz) region.
7.4 Design data of 4H-SiC based DDR IMPATT having different doping concentration in the THz region.
7.5 Effects of punch-through on DC and small-signal properties of 4H-SiC THz devices (Data are reported at their corresponding optimum frequencies).
7.6 Effect of punch-through on series resistance of the 4H-SiC DDR IMPATTs in the THz region.

8.1 Effects of photo-illumination on small-signal properties of GaN based THz-IMPATT diode (Bias Current Density $= 3.2 \times 10^9$ Am$^{-2}$, Depletion Layer Width = 75.0 nm, Epilayer Doping = 2.85×10^{24} m$^{-3}$, DC Breakdown Voltage = 23.0 V).

8.2 Simulation results of shift of ATT phase delay in illuminated GaN IMPATT diode in the THz-region.
8.3 Effects of photo-illumination on small-signal properties of 4H-SiC based THz-IMPATT diode. (Bias Current Density $= 12 \times 10^9$ Am$^{-2}$, Depletion Layer Width = 50.0 nm, Epilayer Doping = 8.0×10^{24} m$^{-3}$, DC Breakdown Voltage = 26.0 V).

8.4 Simulation results of shift of ATT phase delay in illuminated 4H-SiC based IMPATT diode in the THz-region.

9.1 Material parameters of InP used in the computer modeling.
9.2 The structural parameters of InP and Si IMPATT diodes at MM-wave windows.
9.3 DC and high-frequency properties of InP and Si IMPATT diodes at MM-wave window frequencies.
9.4 The design parameters of InP IMPATT diodes in the THz frequency region.
9.5 DC and high-frequency properties of InP IMPATT diodes at Terahertz frequencies.
9.6 Estimated values of series resistance of InP IMPATTs at THz-frequencies.
9.7 The structural parameters of InP Quasi-Read IMPATT diodes in the MM-wave and THz frequency region.
9.8 DC and high-frequency properties of flat and Quasi Read type InP IMPATTs at MM-wave and THz frequencies.
9.9 Estimated values of series resistance of InP SLHL IMPATT at THz-frequencies.
9.10 Effects of optical-illumination on high-frequency properties of InP and Si DDR IMPATT at 220 GHz.
9.11 Effects of optical-illumination on high-frequency properties of InP DDR IMPATTs in the THz region.
9.12 Effects of optical-illumination on high-frequency properties of flat and Quasi-Read type InP DDR IMPATTs in the THz region.

List of Figures:

1.1 Electromagnetic spectrum. I-6
1.2 MM-wave window frequencies. I-14
2.1 Electric field dependent saturation velocity of electrons in (A) Si, (B) GaAs and (C) InP. II-8
2.2 (a) The active layer of a reversed biased SDR IMPATT diode. II-12
2.2 (b) The active layer of a reversed biased DDR IMPATT diode. II-13
2.3 Schematic diode structures, electric field and doping profiles of n"++p"++ and p"++n"++ SDR diodes. II-16
2.4 Waveforms of RF voltage, avalanche current and induced external current in an IMPATT diode. II-17
2.5 Impedance variation with frequency for a Read diode. II-17
2.6(a) Space charge wave propagation in a Read diode. II-18
2.6 (b) Equivalent circuit of the avalanche zone. II-18
2.7 The schematic diode structure, doping profile and field profile of a Double Drift flat profile diode. II-24
2.8 (a) (i) Schematic diagram of Single Drift 'high-low' structure, doping profile and field profile. II-26
2.8 (b) Schematic diode structure, doping profile and typical field profile of (i) High-Low DDR and (ii) Low-High-Low DDR IMPATT diodes. II-27
2.9 Equivalent circuit of IMPATT diode connected to load. II-34
2.10 (a) Schematic diagram of Flip Chip SDR IMPATT diode under optical-illumination. II-52
2.10 (b) Schematic diagram of Top Mounted SDR IMPATT diode under optical-illumination. II-52
2.11 Variation of the real part of the Read diode impedance against frequency for different values of current multiplication factors. II-53
2.12 Variation of the imaginary part of the Read diode impedance against frequency for different values of current multiplication factors. II-54
3.1 Equivalent circuit of IMPATT diode at resonance. III-18
3.2 (a) Schematic diagram of Top Mounted DDR IMPATT diode under optical-illumination. III-23
3.2 (b) Schematic diagram of Flip Chip DDR IMPATT diode under optical-illumination. III-23
3.3 Admittance plots of Si DDR IMPATTs at (a) W-band and (b) D-band. III-24
4.1 Basic structural unit of SiC. IV-9
4.2 Electron drift velocity as a function of electric field in 4H-SiC. IV-9
4.3 Electron drift velocity as a function of electric field in 6H-SiC. IV-10
4.4 Electric field profiles of Si and 4H-SiC SDR IMPATT diodes at Ka-band. IV-22
4.5 Normalized current density profiles of Si and 4H-SiC SDR IMPATT diodes: (a) SD1, (b) SD2 and (c) SD3. IV-23
4.6 Admittance characteristics of Si and 4H-SiC based SDR IMPATT diodes at Ka-band: (a) SD1, (b) SD2 and (c) SD3. IV-23
4.7 Negative resistivity profiles of Si and 4H-SiC based SDR IMPATT diodes at Ka-band: (a) SD1, (b) SD2 and (c) SD3. IV-24
4.8 (a) Electric field profile of 4H-SiC DDR IMPATT diode at Ka-band. IV-25
4.8 (b) Electric field profile of 4H-SiC DDR IMPATT diode at D-band. IV-25
4.8 (c) Electric field profile of 4H-SiC DDR IMPATT diode at Y-band. IV-25
4.9 (a) Normalized current density profile $P(x)$ of 4H-SiC based DDR IMPATT diode at Ka-band, $P = (J_p - J_n)/J$, where, $J_p =$ hole current density, $J_n =$ electron current density and $J =$ total current density. IV-26
4.9 (b) Normalized current density profile $P(x)$ of 4H-SiC based DDR IMPATT diode at D-band, $P = (J_p - J_n)/J$, where, $J_p =$ hole current density, $J_n =$ electron current density and $J =$ total current density. IV-26
4.9 (c) Normalized current density profile $P(x)$ of 4H-SiC based DDR IMPATT diode at Y-band, $P = (J_p - J_n)/J$, where, $J_p =$ hole current density, $J_n =$ electron current density and $J =$ total current density. IV-26
4.10 (a) Admittance plot of 4H-SiC based un-illuminated DDR IMPATT diode at Ka-band. IV-26
4.10 (b) Admittance plot of 4H-SiC based un-illuminated DDR IMPATT diode at D-band. IV-27
4.10 (c) Admittance plot of 4H-SiC based un-illuminated DDR IMPATT diode at Y-band. IV-27
4.11 (a) Negative resistivity profile of un-illuminated 4H-SiC based DDR IMPATT (flat type) at Ka-band. IV-28
4.11 (b) Negative resistivity profile of un-illuminated 4H-SiC based DDR IMPATT (flat type) at D-band. IV-28
4.12 (a) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted SDR IMPATT at Ka-band. IV-35
4.12 (b) Effect of optical illumination on admittance plots of 4H-SiC based Flip Chip SDR IMPATT at Ka-band. IV-35
4.13 (a) Effect of optical illumination on negative resistivity profiles of SiC based flat type (with buffer) Top Mounted SDR IMPATT diode at Ka-band. IV-36
4.13 (b) Effect of optical illumination on negative resistivity profiles of SiC based flat type (with buffer) Flip Chip SDR IMPATT diode at Ka-band. IV-36
4.14 (a) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at Ka-band. IV-37
4.14 (b) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at D-band. IV-38
4.14 (c) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at Y-band.

4.15 (a) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at Ka-band.

4.15 (b) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at D-band.

4.15 (c) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at Y-band.

4.16 Typical doping profile of SLHL SDR IMPATT diode: \(N_1 = 2 \times 10^{22} \text{ m}^{-3} \), \(N_2 = 12 \times 10^{22} \text{ m}^{-3} \) and \(N_h = 5 \times 10^{25} \text{ m}^{-3} \), \(W_1 = 1.7 \mu\text{m} \), \(W_2 = 1.73 \mu\text{m} \) and \(-W_n = 4 \mu\text{m} \).

4.17 Electric field profiles of 4H-SiC based flat and SLHL SDR IMPATT diodes at Ka-band.

4.18 Normalized current density profiles of 4H-SiC SDR IMPATT diodes at Ka-band: (a) SD2, (b) SD3 and (c) SD4.

4.19 Admittance characteristics of 4H-SiC based SDR IMPATTs at Ka-band: (a) SD2, (b) SD3 and (c) SD4.

4.20 Negative resistivity profiles of 4H-SiC based SDR IMPATTs at Ka-band: (a) SD2, (b) SD3 and (c) SD4.

4.21 (a) Typical doping profile of SLHL DDR IMPATT diode at Ka-band: \(N_1 = 1.4 \times 10^{22} \text{ m}^{-3} \), \(N_2 = 9.5 \times 10^{22} \text{ m}^{-3} \) and \(N_h = 5 \times 10^{25} \text{ m}^{-3} \), \(W_1 = 3 \mu\text{m} \), \(W_2 = 3.03 \mu\text{m} \) and \(-W_n = 7.5 \mu\text{m} \).

4.21 (b) Typical doping profile of SLHL DDR IMPATT diode at D-band: \(N_1 = 26 \times 10^{22} \text{ m}^{-3} \), \(N_2 = 200 \times 10^{22} \text{ m}^{-3} \) and \(N_h = 5 \times 10^{25} \text{ m}^{-3} \), \(W_1 = 0.2 \mu\text{m} \), \(W_2 = 0.23 \mu\text{m} \) and \(-W_n = 0.5 \mu\text{m} \).

4.22 (a) Electric field profiles of 4H-SiC based flat and SLHL type DDR IMPATTs at Ka-band.

4.22 (b) Electric field profiles of 4H-SiC based flat and SLHL type DDR IMPATTs at D-band.

4.23 (a) Normalized current density profiles \(P(x) \) of 4H-SiC based flat and SLHL type DDR IMPATT diodes at Ka-band, \(P = (J_p - J_n) / J \), where, \(J_p = \) hole current density, \(J_n = \) electron current density and \(J = \) total current density.

4.23 (b) Normalized current density profiles \(P(x) \) of 4H-SiC based flat and SLHL type DDR IMPATT diodes at D-band, \(P = (J_p - J_n) / J \), where, \(J_p = \) hole current density, \(J_n = \) electron current density and \(J = \) total current density.

4.24 (a) and (b) Admittance plots of 4H-SiC based flat and SLHL type DDR IMPATT diodes at (a) Ka-band and (b) D-band.

4.25 (a) Negative resistivity profiles of 4H-SiC based (a) flat and (b) SLHL type DDR IMPATTs at Ka-band.

4.25 (b) Negative resistivity profiles of 4H-SiC based (a) flat and (b) SLHL type DDR IMPATTs at D-band.
4.26 (a) Effect of optical illumination on admittance characteristics of 4H-SiC based SLHL Top Mounted SDR IMPATT at Ka-band. IV-70
4.26 (b) Effect of optical illumination on admittance characteristics of 4H-SiC based SLHL Flip Chip SDR IMPATT at Ka-band. IV-70
4.27 Effect of optical illumination on negative resistivity profiles of 4H-SiC based SLHL type Top Mounted and Flip Chip SDR IMPATTs at Ka-band. IV-71
4.28 Effect of optical illumination on admittance plots of 4H-SiC based SLHL type Top Mounted and Flip Chip DDR IMPATTs at Ka-band. IV-72
4.29 Effect of optical illumination on admittance plots of 4H-SiC based SLHL type Top Mounted and Flip Chip DDR IMPATTs at D-band. IV-73
4.30 Effect of optical illumination on negative resistivity plots of 4H-SiC based SLHL type Top Mounted and Flip Chip DDR IMPATTs at Ka-band. IV-74
4.31 Effect of optical illumination on negative resistivity plots of 4H-SiC based SLHL type Top Mounted and Flip Chip DDR IMPATTs at D-band. IV-75
5.1 Plots of carrier ionization rate as a function of inverse electric field in 4H-SiC and 6H-SiC. V-10
5.2 E(x) profiles of 4H-SiC based DDR IMPATT diodes at THz frequencies. V-19
5.3 Normalized current density profiles of 4H-SiC based DDR IMPATT diodes at THz frequencies. V-20
5.4 (a) Admittance characteristics of 4H-SiC DDR IMPATT diode at 0.3 THz. V-21
5.4 (b) Admittance characteristics of 4H-SiC DDR IMPATT diode at 0.5 THz. V-21
5.4 (c) Admittance characteristics of 4H-SiC DDR IMPATT diode at 0.7 THz. V-22
5.4 (d) Admittance characteristics of 4H-SiC DDR IMPATT diode at 1.8 THz. V-22
5.5 (a) Effect of series resistance of output power density P_{max} of 4H-SiC THz IMPATT diode: (a) 4H-SiC IMPATT at 300K, $R_s=0.00\,\Omega$, (b) 4H-SiC IMPATT at 300K, $R_s=1.04\times10^{-9}\,\Omega\,m^2$. V-23
5.5 (b) Effect of series resistance on output power density P_{max} of 4H-SiC 0.5 THz IMPATT diode. (a) 4H-SiC IMPATT at 300K, $R_s=0.00\,\Omega$, (b) 4H-SiC IMPATT at 300K, $R_s,\text{total}=0.386\times10^{-9}\,\Omega\,m^2$. V-24
5.5 (c) Effect of series resistance on output power density P_{max} of 4H-SiC 0.7 THz IMPATT diode. V-25
5.5 (d) Effect of series resistance on output power density P_{max} of 4H-SiC 1.8 THz IMPATT diode. (a) 4H-SiC IMPATT at 300K, $R_s=0.00\,\Omega$, (b) 4H-SiC IMPATT at 300K, $R_s,\text{total}=2.2\times10^{-11}\,\Omega\,m^2$. V-26
5.6 (a) Impedance plot of SiC IMPATT diode at 0.3 Terahertz. V-27
5.6 (b) Impedance plot of 4H-SiC IMPATT diode at 0.5 Terahertz. V-28
5.6 (c) Impedance plot of 4H-SiC IMPATT diode at 0.7 Terahertz. V-29
5.6 (d) Impedance plot of 4H-SiC IMPATT diode at 1.8 Terahertz. V-30
5.7 (a) Negative resistivity profile of 4H-SiC DDR IMPATT at 0.3 THz. V-31
5.7 (b) Negative resistivity profile of 4H-SiC DDR IMPATT at 0.5 THz. V-32
5.7 (c) Negative resistivity profile of 4H-SiC DDR IMPATT at 0.7 THz. V-32
5.7 (d) Negative resistivity profile of 4H-SiC DDR IMPATT at 1.8 THz. V-33
5.8 Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at 0.3 THz. V-37
5.9 Effect of optical illumination on \(R(x) \) profiles of 4H-SiC based Top Mounted and Flip Chip DDR IMPATTs at 0.3 THz. V-38
5.10 (a) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted DDR IMPATT diode at 0.5 THz. V-40
5.10 (b) Effect of optical illumination on admittance plots of 4H-SiC based Flip Chip DDR IMPATT diode at 0.5 THz. V-40
5.11 (a) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted DDR IMPATT diode at 0.5 THz. V-41
5.11 (b) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Flip Chip DDR IMPATT diode at 0.5 THz. V-41
5.12 (a) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted DDR IMPATT diode at 0.7 THz. V-43
5.12 (b) Effect of optical illumination on admittance plots of 4H-SiC based Flip Chip DDR IMPATT diode at 0.7 THz. V-44
5.13 (a) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted DDR IMPATT diode at 0.7 THz. V-45
5.13 (b) Effect of optical illumination on negative resistivity profiles of 4H-SiC based Flip Chip DDR IMPATT diode at 0.7 THz. V-46
5.14 (a) Effect of optical illumination on admittance plots of 4H-SiC based Top Mounted DDR IMPATT diode at 1.8 THz. V-50
5.14 (b) Effect of optical illumination on admittance plots of 4H-SiC based Flip Chip DDR IMPATT diode at 1.8 THz. V-51
5.15 Effect of electron (TM illumination configuration) and hole (FC illumination configuration) dominated photo-current on negative resistivity profiles of 4H-SiC DDR IMPATTs at 1.8 THz. V-52
5.16 Electric field profiles of 6H-SiC based DDR IMPATT diodes at THz frequencies. V-56
5.17 Normalized current density profiles of 6H-SiC based DDR IMPATT diodes at THz frequencies. V-57
5.18 (a) Admittance plots of 6H-SiC based DDR IMPATT at 0.3 Terahertz: (a) without \(R_s \), (b) with \(R_{s,\text{total}} \). V-58
5.18 (b) Admittance plots of 6H-SiC based DDR IMPATT at 1.75 Terahertz: (a) without \(R_s \), (b) with \(R_{s,\text{total}} \). V-59
5.19 (a) Negative resistivity profile of 6H-SiC based DDR IMPATT diode at 0.3 THz frequency. V-60
5.19 (b) Negative resistivity profile of 6H-SiC based DDR IMPATT diode at 1.75 THz frequency.

5.20 Impedance plot of 6H-SiC based DDR IMPATT diode at 0.3 THz frequency.

5.21 Impedance plot of 6H-SiC based DDR IMPATT diode at 1.75 THz frequency.

5.22 Effect of optical illumination on admittance plot of 6H-SiC based Top Mounted and Flip Chip DDR IMPATT diodes at 0.3 THz.

5.23 Effect of optical illumination on negative resistivity plots of 6H-SiC based 0.3 THz Top Mounted and Flip Chip IMPATT diode: (a) $M_n = 10^5, M_p = 10^6$, (b) $M_n = 50, M_p = 10^6$, (c) $M_n = 25, M_p = 10^6$, (d) $M_n = 10^6, M_p = 50$, (e) $M_n = 10^6, M_p = 25$.

5.24 Effects of optical illumination on admittance plot of 6H-SiC based Top Mounted and Flip Chip DDR IMPATT diodes at 1.75 THz (Junction temperature = 300K).

5.25 Effect of optical illumination on negative resistivity plot of 6H-SiC based Top Mounted and Flip Chip DDR IMPATT diode at 1.75 THz.

5.26 Effect of elevated temperature on electric field profiles of SiC DDR IMPATT diodes at THz frequency (> 1 THz).

5.27 Effect of elevated temperature on normalised current density profiles of SiC DDR IMPATT diodes at: THz frequency (> 1 THz)

5.28 Effect of elevated temperature on impedance plots of SiC IMPATT diodes: a, a' and b, b' \rightarrow T = 300K, c, c' and d, d' \rightarrow 500K.

5.29 Effect of temperature and series resistance on P_{max} of SiC THz IMPATT diodes.
 (a) 4H-SiC IMPATT at 300K, $R_s = 0.0 \Omega$, (b) 4H-SiC IMPATT at 300K, $R_{s,\text{total}} = 2.22 \times 10^{11} \Omega m^2$, (c) 4H-SiC IMPATT at 300K $< T < 600K$, $R_s = 0.0 \Omega m^2$; (d) 4H-SiC IMPATT at 300K $< T < 600K$, $R_{s,\text{total}} = 2.55 \times 10^{11} \Omega m^2$; (e) 6H-SiC IMPATT at 300K, $R_s = 0.0 \Omega m^2$; (f) 6H-SiC IMPATT at 300K, $R_{s,\text{total}} = 3.30 \times 10^{11} \Omega m^2$; (g) 6H-SiC IMPATT at 300K $< T < 600K$, $R_s = 0.0 \Omega$; (h) 6H-SiC IMPATT at 300K $< T < 600K$, $R_{s,\text{total}} = 3.56 \times 10^{11} \Omega m^2$.

5.30 (a) Effect of electron dominated photocurrent (TM illumination configuration) on 4H-SiC based THz DDR IMPATT at elevated junction temperature.

5.30 (b) Effect of hole dominated photocurrent (FC illumination configuration) on 4H-SiC based THz DDR IMPATT at elevated junction temperature.

5.31 Effect of optical illumination on admittance plots of 6H-SiC based DDR IMPATT diode:
 (a $-$ e: T = 300K) and (a' $-$ e': 300K $< T < 600K$)

5.32 Effect of electron (TM) and hole (FC) dominated photo-currents on negative resistivity profiles of 4H-SiC THz IMPATT diodes at two different junction temperatures.

5.33 Effect of electron (TM) and hole (FC) dominated photo-currents on negative resistivity profiles of 6H-SiC THz IMPATT diodes at two different junction temperatures.

5.34 Electric field profiles of 4H-SiC based flat and SLHL type DDR IMPATTs at 0.5 THz.

5.35 Normalised current density profiles of 4H-SiC based flat and SLHL type DDR IMPATTs at 0.5 THz.
5.36(a) Effect of optical illumination on admittance plots of 4H-SiC based SLHL type Top Mounted DDR IMPATT diodes at 0.5 THz.

5.36(b) Effect of optical illumination on admittance plots of 4H-SiC based SLHL type Flip Chip DDR IMPATT diodes at 0.5 THz.

5.37 Effect of optical illumination on negative resistivity profiles of 4H-SiC based Top Mounted and Flip Chip DDR IMPATT diodes at 0.5 THz.

6.1 Electric field profiles of Si and GaN IMPATTs at D-band.

6.2 Normalised current density profiles of Si and GaN based SDR IMPATT diodes at D-band.

6.3 Admittance plots of (a) Si and (b) GaN SDR IMPATT diodes at D-band.

6.4 Negative resistivity plots of (a) GaN and (b) Si SDR IMPATT diodes at D-band.

6.5 Impedance plot of Wz-GaN based SDR IMPATT at D-band.

6.6 Electric field profile of GaN flat profile SDR IMPATT at 0.5 THz.

6.7 Normalised current density profile of GaN SDR IMPATT diode at 0.5 THz.

6.8 Effect of series resistance of negative conductance of GaN SDR IMPATT diode at 0.5 THz.

6.9 Impedance plot of GaN SDR IMPATT diode at 0.5 THz.

6.10 Negative resistivity profile of GaN SDR IMPATT diode at 0.5 THz.

6.11 Plots of electric field profile for (a) WZ phase and (b) ZB phase GaN (flat-profile) SDR IMPATT Diodes in the THz region. The distance of the n-side from the metallurgical junction has been shown as negative.

6.12 Normalized current density P(x) profiles of (a) WZ-GaN and (b) ZB-GaN based SDR IMPATT diodes in the Terahertz region. The distance of the n-side from the metallurgical junction has been shown as negative.

6.13 Conductance (G) - Susceptance (B) plots of (a) WZ-GaN and (b) ZB GaN based IMPATT diodes in the Terahertz region.

6.14 Effect of series resistance on the negative conductance of unilluminated WZ-GaN (flat type) SDR IMPATT diode.

6.15 Effect of series resistance on \(P_{\text{max}} \) of unilluminated WZ-GaN (flat-type) SDR IMPATT diode.

6.16 (a) Diode impedance vs. frequency plots of WZ-GaN flat profile SDR THz IMPATT diode.

6.16 (b) Diode impedance vs. frequency plots of ZB-GaN flat profile SDR THz IMPATT diode.

6.17 Negative resistivity profiles of (a) WZ-GaN and (b) ZB - GaN based flat profile SDR IMPATT diodes in the Terahertz region.

6.18 Plots of electric field profiles for (a) flat profile and (b) SLHL type GaN SDR IMPATT diodes. The distance of the n-side from the metallurgical junction has been considered as negative.

6.19 Normalised current density P(x) profiles of WZ-GaN SDR IMPATT diode at THz region (a) Flat profile IMPATT, (b) SLHL IMPATT diode. The distance of the n-side from the metallurgical junction has been considered as negative.
6.20 Conductance (G) – Susceptance (B) plots of GaN (a) SLHL and (b) flat type SDR THz IMPATT diodes.

6.21 Effect of series resistance on the negative conductance of WZ-GaN (SLHL type) SDR IMPATT diode in the Terahertz region.

6.22 Effect of series resistance on P_{max} of WZ-GaN (SLHL) SDR IMPATT diode in the Terahertz region.

6.23 Diode impedance vs. frequency plot of WZ-GaN SLHL SDR THz IMPATT diode.

6.24 (a) Conductance (G) – Susceptance (B) plots of unilluminated GaN SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n at D-band.

6.24 (b) Conductance (G) – Susceptance (B) plots of unilluminated GaN SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_p at D-band.

6.25 (a) Negative resistivity profiles of the unilluminated GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n and corresponding different values of optimum frequencies, f_p in GHz: a: $M_n = 10^6$, $M_p = 10^6$, $f_p = 145$ GHz; b: $M_n = 50$, $M_p = 10^6$, $f_p = 147$ GHz; c: $M_n = 25$, $M_p = 10^6$, $f_p = 149$ GHz.

6.25 (b) Negative resistivity profiles of the unilluminated GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_p and corresponding different values of optimum frequencies, f_p in GHz: a: $M_n = 10^6$, $M_p = 10^6$, $f_p = 145$ GHz; b: $M_n = 10^5$, $M_p = 50$, $f_p = 149$ GHz; c: $M_n = 10^5$, $M_p = 25$, $f_p = 151$ GHz.

6.26 (a) Conductance (G) - Susceptance (B) plots of unilluminated WZ-GaN flat profile SDR THz IMPATT diode (a) and the illuminated diode (b-d) for different values of M_n.

6.26 (b) Conductance (G) - Susceptance (B) plots of unilluminated WZ-GaN flat profile SDR THz IMPATT diode (a) and the illuminated diode (b-d) for different values of M_p.

6.27 (a) Negative resistivity profiles of the unilluminated WZ-GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-d) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz: a: $M_n = 10^6$, $M_p = 10^6$, $f_p = 1.4170$ THz; b: $M_n = 100$, $M_p = 10^6$, $f_p = 1.4188$ THz; c: $M_n = 50$, $M_p = 10^6$, $f_p = 1.4197$ THz; d: $M_n = 25$, $M_p = 10^6$, $f_p = 1.4230$ THz.

6.27 (b) Negative resistivity profiles of the unilluminated GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-d) for different values of M_p and corresponding different values of optimum frequencies, f_p in THz: a: $M_n = 10^6$, $M_p = 10^6$, $f_p = 1.4170$ THz; b: $M_n = 100$, $M_p = 10^6$, $f_p = 1.4520$ THz; c: $M_n = 50$, $M_p = 10^6$, $f_p = 1.4606$ THz; d: $M_n = 25$, $M_p = 10^6$, $f_p = 1.570$ THz.

6.28 (a) Conductance (G) - Susceptance (B) plots of unilluminated WZ-GaN SLHL SDR THz IMPATT diode (a) and the illuminated diode (b-d) for different values of M_n.

6.28 (b) Conductance (G) - Susceptance (B) plots of unilluminated WZ-GaN SLHL SDR THz IMPATT diode (a) and the illuminated diode (b-d) for different values of M_p.

6.29 (a) Negative resistivity profiles of the unilluminated WZ-GaN SLHL SDR IMPATT diode
(a) and the illuminated diode (b-d) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz:
<table>
<thead>
<tr>
<th>Value of M_n</th>
<th>Value of M_p</th>
<th>Optimum Frequency, f_p (THz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>10^6</td>
<td>1.4340</td>
</tr>
<tr>
<td>100</td>
<td>10^6</td>
<td>1.4370</td>
</tr>
<tr>
<td>50</td>
<td>10^6</td>
<td>1.4450</td>
</tr>
<tr>
<td>25</td>
<td>10^6</td>
<td>1.4500</td>
</tr>
</tbody>
</table>

6.29 (b) Negative resistivity profiles of the unilluminated WZ-GaN SLHL SDR IMPATT diode

6.30 Plots of electric field profiles for WZ- GaN and 4H-SiC SDR IMPATT diodes. The distance of the n-side from the metallurgical junction has been shown as negative.

6.31 Normalized current density $P(x)$ profiles of (a) WZ GaN and (b) 4H-SiC SDR IMPATT diodes at THz region. The distance of the n-side from the metallurgical junction has been shown as negative.

6.32 Admittance plots of IMPATT diodes: a. WZ-GaN, b. 4H-SiC.

6.33 Effect of series resistance on maximum power output of SiC and GaN IMPATT diodes in the THz region.

6.34 Impedance plots of WBG IMPATT diodes at Terahertz region.

6.35 Admittance plots of WZ-GaN and 4H-SiC based photo-illuminated Top Mounted SDR THz IMPATTs.

6.36 (a) Admittance plots of WZ-GaN based photo-illuminated Flip Chip SDR THz IMPATTs.

6.36 (b) Admittance plots of 4H-SiC based photo-illuminated Flip Chip SDR THz IMPATTs.

6.37 (a) Negative resistivity profiles of the unilluminated WZ-GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz:

6.38 (a) Negative resistivity profiles of the unilluminated 4H-SiC flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz:

6.38 (b) Negative resistivity profiles of the unilluminated 4H-SiC flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_p and corresponding different values of optimum frequencies, f_p in THz:

\[M_n = 10^6, M_p = 50, f_p = 1.18 \text{ THz}, c: M_n = 10^6, M_p = 25, f_p = 1.20 \text{ THz}. \]

7.1 Plots of electric field profile for WZ phase GaN SDR IMPATT diode for different doping concentration at the same bias current density. The distance of the n-side from the metallurgical junction has been considered as negative.

7.2 Normalized current density \(P(x) \) profiles of WZ GaN SDR IMPATT diodes under different doping concentration at THz region. The distance of the n-side from the metallurgical junction has been considered as negative.

7.3 Effect of punch-through on admittance plots of WZ-GaN based SDR IMPATT in the THz region.

7.4 Negative resistivity profiles of the WZ-GaN based flat profile SDR IMPATT diode:
Set I: \(2.00 \times 10^{24} \text{ m}^{-3} \), Set II: \(2.85 \times 10^{24} \text{ m}^{-3} \), Set III: \(3.2 \times 10^{24} \text{ m}^{-3} \).

7.5 Effect of punch through on electric field profiles of 4H-SiC DDR IMPATT diodes in the THz region.

7.6 Effect of punch through on normalized current density profiles \(P(x) \) of 4H-SiC DDR IMPATT diodes, in the THz region: \(P = (J_p - J_n)/ J \), where, \(J_p \) = hole current density, \(J_n \) = electron current density and \(J \) = total current density.

7.7 Effect of punch through on the admittance characteristics of 4H-SiC DDR IMPATT diode in the THz region.

7.8 Effect of punch through on negative resistivity profiles of 4H-SiC DDR IMPATT diodes in the THz region.

8.1 Plots of electric field profiles for WZ-GaN SDR IMPATT diodes for different values of current multiplication factors. The distance of the n-side from the metallurgical junction has been considered as negative.

8.2 Variation of avalanche zone width with current multiplication factors, \(M_n \) and \(M_p \) in WZ-GaN IMPATT.

8.3 Variation of \(Z_{AV} \) and \(Q_p \) with \(M_n \) and \(M_p \) in WZ-GaN IMPATTs in the THz region: (a, c) corresponds to TM illumination and (b, d) corresponds to FC illumination.

8.4 Negative resistivity profiles of the unilluminated WZ-GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of \(M_n \) and corresponding different values of optimum frequencies, \(f_p \) in THz: a: \(M_n = 10^6, M_p = 10^6, f_p = 1.126 \text{ THz} \); b: \(M_n = 50, M_p = 10^6, f_p = 1.128 \text{ THz} \), c: \(M_n = 25, M_p = 10^6, f_p = 1.132 \text{ THz} \).

8.5 Negative resistivity profiles of the unilluminated WZ-GaN flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of \(M_p \) and corresponding different values of optimum frequencies, \(f_p \) in THz: a: \(M_n = 10^6, M_p = 10^6, f_p = 1.126 \text{ THz} \); b: \(M_n = 10^6, M_p = 50, f_p = 1.180 \text{ THz} \), c: \(M_n = 10^6, M_p = 25, f_p = 1.300 \text{ THz} \).

8.6 Variation of ATT phase delay shift in WZ-GaN IMPATT with multiplication factors, \(M_n \) and \(M_p \).
8.7 Plots of electric field profiles for 4H-SiC-based IMPATT diodes for different values of current multiplication factors. The distance of the n-side from the metallurgical junction has been considered as negative.

8.8 Variation of avalanche zone width with multiplication factors, M_n and M_p in 4H-SiC IMPATT diode.

8.9 Variation of Z_{Sp} and Q_p with M_n and M_p in 4H-SiC IMPATTs in the THz region: (a, c) corresponds to TM illumination and (b, d) corresponds to FC illumination.

8.10 Negative resistivity profiles of the unilluminated 4H-SiC flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz: a: $M_n = 10^6$, $M_p = 10^8$, $f_p = 1.050$ THz; b: $M_n = 50$, $M_p = 10^6$, $f_p = 1.085$ THz, c: $M_n = 25$, $M_p = 10^5$, $f_p = 1.090$ THz.

8.11 Negative resistivity profiles of the unilluminated 4H-SiC flat profile SDR IMPATT diode (a) and the illuminated diode (b-c) for different values of M_n and corresponding different values of optimum frequencies, f_p in THz: a: $M_n = 10^6$, $M_p = 10^8$, $f_p = 1.050$ THz; b: $M_n = 10^5$, $M_p = 50$, $f_p = 1.18$ THz, c: $M_n = 10^5$, $M_p = 25$, $f_p = 1.20$ THz.

8.12 Variation of ATT phase delay shift in 4H-SiC THz IMPATT with current multiplication factors, M_n and M_p.

9.1 Electric field profiles of Si and InP DDR IMPATT diodes at 35 GHz.

9.2 Electric field profiles of Si and InP DDR IMPATT diodes at 220 GHz.

9.3 Normalized current density profiles $P(x)$ of InP DDR IMPATT diodes, $P = (J_p - J_n)/J$, where, J_p = hole current density, J_n = electron current density and J = total current density.

9.4 Normalized current density profiles $P(x)$ of InP DDR IMPATT diodes, $P = (J_p - J_n)/J$, where, J_p = hole current density, J_n = electron current density and J = total current density.

9.5 Admittance plots of Si and InP DDR IMPATT diodes at 35 GHz.

9.6 Admittance plots of Si and InP DDR IMPATT diodes at 220 GHz.

9.7 Negative resistivity profiles of Si and InP flat profile DDR IMPATTs at 35 GHz.

9.8 Negative resistivity profiles of Si and InP flat profile DDR IMPATTs at 220 GHz.

9.9 Electric field profiles of InP DDR IMPATTs at THz frequencies.

9.10 Normalised current density profiles $P(x)$ of InP DDR IMPATT diodes at THz frequencies: $P = (J_p - J_n)/J$, where, J_p = hole current density, J_n = electron current density and J = total current density. IX-20 9.11 Admittance plots of InP flat profile DDR IMPATT diodes in the THz region.

9.12 Effect of series resistance on output power density of InP flat type IMPATT diodes in the THz region.

9.13 Impedance plots of InP DDR IMPATT diode at 0.3 THz.

9.14 Impedance plots of InP DDR IMPATT diode at 0.5 THz.

9.15 Negative resistivity profiles of InP flat-profile DDR IMPATT diodes at THz frequencies.
9.16 Electric field profiles of InP flat and SLHL DDR IMPATTs at 35 GHz.
IX-29

9.17 Electric field profiles of InP flat and SLHL DDR IMPATTs at 0.5 THz.
IX-29

9.18 Normalized current density profiles $P(x)$ of InP flat and SLHL DDR IMPATT diodes at 35 GHz,
$P = (J_p - J_n)/J$, where, J_p = hole current density, J_n= electron current density and J = total current density.
IX-30

9.19 Normalized current density profiles $P(x)$ of InP flat and SLHL DDR IMPATT diodes at 0.5 THz,
$P = (J_p - J_n)/J$, where, J_p = hole current density, J_n= electron current density and J = total current density.
IX-30

9.20 Admittance plots of InP based flat and SLHL DDR IMPATTs at 35 GHz.
IX-31

9.21 Admittance plots of InP based flat and SLHL DDR IMPATTs at 0.5 THz.
IX-32

9.22 Effect of series resistance on output power density of InP flat and SLHL type IMPATT diodes at 0.5 THz.
IX-33

9.23 Impedance plots of InP flat and SLHL IMPATT diodes at 0.5 THz.
IX-34

9.24 Negative resistivity profiles of InP flat and SLHL DDR IMPATTs at 35 GHz.
IX-35

9.25 Negative resistivity profiles of InP flat and SLHL DDR IMPATTs at 0.5 THz.
IX-36

9.26 (a) Effect of electron (TM) and hole (FC) dominated photo-currents on admittance plots of InP flat profile DDR IMPATT diodes at 220 GHz.
IX-40

9.26 (b) Effect of electron (TM) and hole (FC) dominated photo-currents on admittance plots of Si flat profile DDR IMPATT diodes at 220 GHz.
IX-40

9.27 (a) Negative resistivity profiles of InP DDR IMPATT diode a : $f_p = 222$ GHz, b : $f_p = 235$ GHz,
c : $f_p = 238$ GHz, d : $f_p = 242$ GHz, e : $f_p = 265$ GHz.
IX-41

9.27 (b) Negative resistivity profiles of Si DDR IMPATT diode a : $M_n = M_p = 10^{5}$, $f_p = 215$ GHz b :
$M_n = 10^{5}$, $M_p = 100$, $f_p = 215$ GHz c : $M_n =100$, $M_p = 10^{5}$, $f_p = 217$ GHz d : $M_n = 10^{5}$, $M_p = 25$,
f_p = 220 GHz e : $M_n = 25$, $M_p = 10^{5}$, $f_p = 230$ GHz
IX-42

9.28 (a) Effect of optical illumination on admittance plots of InP DDR Top Mounted IMPATT at 0.3 THz.
IX-45

9.28 (b) Effect of optical illumination on admittance plots of InP DDR Flip Chip IMPATT at 0.3 THz.
IX-45

9.29 Effect of electron (TM) and hole (FC) dominated photo-currents on admittance plots of InP flat profile DDR IMPATT diodes at 0.5 THz.
IX-46

9.30 Effect of optical-illumination on negative resistivity profiles of InP flat-profile Top Mounted and Flip Chip IMPATT diodes at 0.3 THz. a: $f_p = 0.3$ THz, b : $f_p = 0.315$ THz and c: $f_p = 0.330$ THz.
IX-47

9.31 Effect of optical-illumination on negative resistivity profiles of InP flat-profile Top Mounted and Flip Chip IMPATT diodes at 0.5 THz. a: $f_p = 0.5$ THz, b : $f_p = 0.515$ THz and c: $f_p = 0.522$ THz.
IX-48

9.32 Effect of optical illumination on admittance plots of InP TM and FC type SLHL DDR IMPATTs at 0.5 THz.
IX-51

9.33 Effect of optical illumination on negative resistivity profiles of InP TM and FC type SLHL DDR IMPATTs at 0.5 THz. a: $f_p = 0.550$ THz, b : $f_p = 0.570$ THz and (c): $f_p =0.600$ THz.
IX-52