CONTENTS

Preface (i)

Synopsis (vii)

CHAPTER - 1 GENERAL INTRODUCTION
1.1 Introduction (1)
1.2 DC motor drive (2)
1.2.1 Electronic control (3)
1.2.2 Solid state control (3)
1.2.3 State of the art (5)
1.3 AC motor drive (6)
1.3.1 State of the art (7)
1.4 Power factor consideration (13)
1.4.1 Avoidance of low power factor (14)
1.4.2 Methods of improving power factor (14)
1.4.3 Location of power factor improvement apparatus (15)
1.5 Basic control scheme (15)
1.5.1 Digital approach of control (17)
1.6 Evolution of microprocessor, microcomputer based control ---- a new era (18)
1.7 Objective of the text (21)

SECTION - I
(MICROPROCESSOR, MICROCOMPUTER AND DEVELOPMENT OF SOME INTERFACING DEVICES)

CHAPTER - 2 MICROPROCESSOR, MICROCOMPUTER AND SOME INTERFACING DEVICES
2.1 Introduction (23)
2.2 Historical development (24)
2.3 General organisations (25)
2.3.1 Central processing unit (CPU) (25)
2.3.2 Memory section (30)
2.3.3 Input / output units (31)
2.3.4 Buses (33)
2.4 Development of some useful interfacing devices (35)
SECTION - II

(STARTING, CONTROL AND SPEED REGULATION OF INDUSTRIAL DRIVES)

CHAPTER - 3 STARTING, CONTROL AND SPEED REGULATION OF DC SERIES MOTOR
3.1 Introduction (45)
3.2 Objective (46)
3.3 Hardware Organisation and System Functioning (47)
3.4 Control Strategy and Development of Computational law (50)
3.5 System Software (53)
3.6 Results and Discussion (66)
3.7 Development of Auto Adjustable Speed Control Scheme of DC Series Motor (79)
3.8 Software listing (80)
3.8 Conclusion (95)

CHAPTER - 4 DEVELOPMENT OF MICROPROCESSOR BASED VARIABLE SPEED DC SHUNT MOTOR -- ITS SOFTSTART AND ADAPTIVE CONTROL
4.1 Introduction (97)
4.2 Objective (98)
4.3 Variable speed DC Shunt motor module (99)
4.4 Variable speed operation and Speed Regulation Strategy (103)
4.5 Software Development (104)
4.6 Experimental Results (110)
4.7 Software listing (114)
4.8 Conclusion (124)

CHAPTER - 5 STARTING, CONTROL AND SPEED REGULATION OF DC MOTOR USING PULSED SUPPLY METHOD
5.1 Introduction (126)
5.2 Objective (126)
5.3 Theory (127)
5.4 System Hardware (127)
5.5 Operational Strategy (129)
5.6 System Software (130)
5.7 Experiment (133)
5.8 Software listing (134)
5.9 Conclusion (142)

CHAPTER - 6 MAXIMUM EFFICIENT RUNNING OF DC MOTOR
6.1 Introduction (145)
6.2 Control Philosophy (145)
6.3 System Hardware (146)
6.4 System Software (149)
6.5 Software listing (153)
6.6 Results and Discussions (155)
6.7 Conclusion (161)
CHAPTER - 7 MICROPROCESSOR BASED PROTECTION OF A THREE PHASE INDUCTION MOTOR AGAINST OVER CURRENT, OVER AND UNDER VOLTAGE, SINGLE PHASING, REVERSE PHASING AND REVERSED DIRECTION OF ROTATION

7.1 Introduction (162)
7.2 Starting (163)
7.3 Over current protection (164)
7.4 Under voltage protection (164)
7.5 Single phasing (165)
7.6 Reverse phasing (167)
7.7 Development of sensor for sequence protection, under and over voltage and single phasing protection (167)
7.7.1 Proposed sensor circuitry (167)
7.7.2 Sensor circuitry (168)
7.7.3 Analysis of the sensor circuit (168)
7.8 Experimental results (174)
7.9 System Hardware (175)
7.10 Software description (177)
7.11 Software listing (184)
7.12 Conclusion (187)

CHAPTER - 8 DEVELOPMENT OF MICROPROCESSOR BASED INDUSTRIAL STARTER AND SLIP REGULATOR OF AN INDUCTION MOTOR

8.1 Introduction (189)
8.2 Objective (190)
8.3 Modeling and Control Strategy (191)
8.4 Hardware Organisation and System Functioning (193)
8.5 System Software (196)
8.6 Software listing (201)
8.7 Experiment (208)
8.8 Conclusion (209)

CHAPTER - 9 DEVELOPMENT OF MICROPROCESSOR BASED ENERGY EFFICIENT DIGITAL SOFTSTARTING, VARIABLE SPEED OPERATION AND SLIP REGULATION OF AN INDUCTION MOTOR

9.1 Introduction (214)
9.2 Objective (215)
9.3 Power transistor (215)
9.3.1 MOSFET (216)
9.4 System Hardware and System Functioning (218)
9.5 System Software (220)
9.6 Software listing (225)
9.7 Experiment (227)
9.8 Discussion (229)

SECTION - III
(Power Factor Regulator of Industrially Loaded Buses)

CHAPTER - 10 MICROPROCESSOR BASED SYNCHRONOUS CONDENSER EXCITATION CONTROLLER USED FOR IMPROVEMENT OF POWER FACTOR AT INDUSTRIALLY LOADED BUSES
10.1 Introduction (236)
CHAPTER - 11 DEVELOPMENT OF AN INDUSTRIAL LOAD BUS POWER FACTOR REGULATOR BY USING SVC AND PARALLEL PROCESSING OF MICROPROCESSOR
11.1 Introduction (257)
11.2 Objective (258)
11.3 Modeling (258)
11.4 Reactance control philosophy (259)
11.5 Hardware organisation and System functioning (261)
11.6 Software Development (263)
11.7 Software listing (271)
11.8 Experiment (277)
11.9 Conclusion (277)
11.10 Limitation (278)

CHAPTER - 12 DEVELOPMENT OF PARALLEL PROCESSOR BASED POWER FACTOR REGULATOR FOR INDUSTRIAL LOAD BUS
12.1 Introduction (279)
12.2 Parallel processor based power factor regulation scheme (280)
12.3 Software development (284)
12.3.1 Parallel Processing Software (286)
12.3.2 Software for slave processor 1 (287)
12.3.3 Software for slave processor 2 (289)
12.4 Software listing (297)
12.5 Experimental results (306)
12.6 Conclusion (307)

CHAPTER - 13 CONCLUSION
13.1 Main Achievement (308)
13.2 Future Scope of the Work (314)

REFERENCES (316)

APPENDIX - I SYSTEM FEATURES OF THE INCONIX INTELLIGENT MICRO SYSTEM IMS 5808 USED IN THE PRESENT INVESTIGATION (333)

APPENDIX - II DEVELOPMENT OF SOME UTILITY SUBPROGRAM (342)

LIST OF PUBLICATIONS OF THE AUTHOR (349)

RELATED REPRINTS OF THE PAPERS (352)

ACKNOWLEDGMENTS (vi)