


6. Arabinda Das and A.K. Mukhopadhyay:
Characteristic based proportional control of dc series motor using
Microprocessor.
Modelling, Measurement & Control, A (France), Vol. 55, No. 2,

7. Arabinda Das and A. K. Mukhopadhyay:
Microprocessor based operational control of dc series motor with
protection against over current.
38th Annual Convention of the Institution of Engineers, Dhaka,

8. A. K. Mukhopadhyay and Arabinda Das:
A microprocessor based efficient load management scheme on the
basis of transformer regulation and IDMT characteristic.
Jour. of Modelling, Measurement & Control, A, (France) Vol.59,
(Also published in Annual Technical Journal organised by West
Bengal State Electricity board Engineers’ Association, Journal
’93, Invited Chapter pp. 51 - 56)

9. B. Nag, A. K. Mukhopadhyay, Arabinda Das and D. K. Basu:
Temperature control using a microprocessor based air flow
controller.
Jour. of Modelling, Measurement & Control, A, (France) Vol.60,

10. A. K. Mukhopadhyay and Arabinda Das:
Development of differential protection scheme by microprocessor
based per cent differential relay.
Jour. of Modelling, Measurement & Control, A, (France) Vol.60,
No.3, 1995, pp. 33-44.

11. Arabinda Das and A. K. Mukhopadhyay:
Microprocessor based controller for three phase Induction Motor
with protection against single phasing (In Bengali).
Proc. of West Bengal State Science Congress, Calcutta, 28 Feb.

12. Arabinda Das and A. K. Mukhopadhyay
Characteristic-based proportional plus derivative control of
dc series motor using microprocessor.
Jour. of Modelling, Measurement & Control, A, (France) Vol.64,

13. Arabinda Das and A. K. Mukhopadhyay:
Development of Microprocessor Based Power Factor Sensor (In
Bengali).
Proc. of West Bengal State Science Congress, Calcutta, 28 Feb.

14. Arabinda Das and A. K. Mukhopadhyay:
Microprocessor based pulsed-supply method for variable speed
operation and speed regulation of dc motor
Accepted for the publication in the Jour. of IE(I).
15. Arabinda Das and A. K. Mukhopadhyay:
Development of an industrial load bus power factor regulator by
using SVC and parallel processing of microprocessor
Accepted for publication in the Jour. of IE(I).

16. Arabinda Das and A. K. Mukhopadhyay:
Microprocessor based excitation controller for a synchronous motor
for improvement of power factor at industrial load bus.
Communicated for publication in the Jour. of Biduit Bharati
(India).