INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page number</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of abbreviations</td>
<td>1</td>
</tr>
<tr>
<td>List of Figures</td>
<td>4</td>
</tr>
<tr>
<td>Synopsis</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 1 Introduction</td>
<td></td>
</tr>
<tr>
<td>Embryonic myogenesis in mammals</td>
<td>12</td>
</tr>
<tr>
<td>Postnatal growth of muscle</td>
<td>16</td>
</tr>
<tr>
<td>Regeneration of adult muscle</td>
<td>16</td>
</tr>
<tr>
<td>Satellite cells</td>
<td>18</td>
</tr>
<tr>
<td>Origin of satellite cells</td>
<td>18</td>
</tr>
<tr>
<td>Specification of satellite cells</td>
<td>20</td>
</tr>
<tr>
<td>The Identity of satellite cells</td>
<td>20</td>
</tr>
<tr>
<td>Heterogeneity among satellite cell populations</td>
<td>21</td>
</tr>
<tr>
<td>Quiescence of Satellite Cells</td>
<td>21</td>
</tr>
<tr>
<td>Activation of satellite cells</td>
<td>22</td>
</tr>
<tr>
<td>Self-renewal or differentiation? The choices for a stem cell</td>
<td>23</td>
</tr>
<tr>
<td>Are satellite cells the only source of muscle precursors in muscle?</td>
<td>25</td>
</tr>
<tr>
<td>Plasticity of muscle precursor cells</td>
<td>26</td>
</tr>
<tr>
<td>Other cell types important for muscle regeneration</td>
<td>27</td>
</tr>
<tr>
<td>Degenerative diseases of muscle</td>
<td>28</td>
</tr>
<tr>
<td>Therapeutic interventions for dystrophies</td>
<td>29</td>
</tr>
<tr>
<td>Gene Delivery</td>
<td>30</td>
</tr>
<tr>
<td>Cell Based Therapies</td>
<td>30</td>
</tr>
<tr>
<td>Growth Control in Myoblasts and the Role of Myogenic Regulatory Factors</td>
<td>31</td>
</tr>
<tr>
<td>Research Outline</td>
<td>37</td>
</tr>
</tbody>
</table>
Chapter 2 Methods

Cell culture: Adherent culture...40
Cell culture: Suspension culture...41
Cell Culture: Hybridoma cells..42
Cycloheximide treatment of myoblasts..43
Actinomycin-D treatment of cultured myoblasts...43
Detection of DNA synthesis in cells by bromodeoxyuridine incorporation...............43
Immunofluorescence on cultured cells...44
Fluorescent detection of actin..45
RNA isolation from cultured cells and tissue samples...45
Differential Display PCR..46
Preparation of probes for Southern and Northern hybridization.............................49
Northern and Southern hybridizations..50
Colony hybridizations...51
Northern affinity capture purification of DD-PCR products.......................................51
Nuclear Run-On Assays...52
Primers and PCR Conditions...54
RT PCR of CD34..56
Freeze injury of skeletal muscle in vivo...56
Cryosections of muscle tissue..57
Gelatin coating of slides..57
Hematoxylin and Eosin staining..57
Immunofluorescence for fetal myosin isoform..58
Implantation of C2C12 cells in TA muscle in vivo..58
RNA in situ hybridization on tissue sections...59
RNA in situ hybridization on whole embryos..61
Preparation of ultra-competent cells...63
Chapter 3 Reversibly growth arrested muscle cells: a model system for skeletal muscle satellite cells

Introduction
Growth and differentiation are mutually exclusive pathways.............................67
Reversible arrest in stem cells..67
Reversible arrest in cultured myoblasts...68

Results
Sub-cloning of C2C12 myoblasts to obtain stringently anchorage-dependent clones. ..70
Reversible arrest in C2C12 myoblasts ...70
Anchorage deprivation in C2C12 myoblasts uncouples cell cycle arrest from differentiation..74
Not all genes are downregulated in reversibly arrested myoblasts...............78
Cell cycle dependent expression of satellite cell markers during arrest and activation of C2C12 cells in culture...78

Discussion
Non-adherent conditions lead to growth arrest in the absence of differentiation....81
CD34 and PEA3 expression reflect a molecular resemblance of myoblasts in culture to satellite cells ..84
Reversible arrest and activation of adhesion-deprived C2C12 cells in culture mirror quiescence and activation of SC in vivo...85
Chapter 4 Isolation and analysis of cDNAs from synchronized myoblasts:
expression during growth arrest and reactivation in culture

Introduction

- Growth arrest and activation...88
- Reversibly arrested myoblasts as a model for satellite cells..................89
- A search for molecules expressed in arrested myoblasts........................90

Results

- Identification and isolation of cDNAs expressed in \(G_0 \) myoblasts........90
- Transcripts induced during \(G_0 \) arrest in suspension are further induced during exit from quiescence..102
- The TTP gene is transcriptionally active in arrested myoblasts............104
- LIX and TTP transcripts are labile..106
- Do LIX and TTP transcripts have different stabilities in arrested and reactivated cells? ...109
- LIX, TTP and Znf216 are expressed in fibroblasts.................................112

Discussion

- Four mRNAs isolated from \(G_0 \) myoblasts...115
 - LPS-Inducible CXC Chemokine (LIX) ..115
 - Tristetraprolin (TTP) ..116
 - Matrilin-2...118
 - Znf216..118
- Transcripts isolated from arrested myoblasts are transiently induced during reactivation...120
- Regulation of the arrest-induced cDNAs in myoblasts.........................120
- Cell type specific regulation of transcripts..122
Chapter 5 In vivo analysis of cDNAs isolated from synchronized myoblasts: expression in regenerating muscle

Introduction

Results

Freeze injury results in a series of events in muscle leading to regeneration.....126
LIX and TTP are rapidly induced in response to injury in muscle...................131
LIX mRNA is expressed in the developing limb buds of mouse embryo........133
Detection of cell-specific expression of transcripts in adult mouse muscle using RNA in situ hybridization..135
Cellular distribution of LIX and TTP transcripts in the injured muscle...........137
LIX and TTP may mark satellite cells..139

Discussion

Expression of LIX and TTP transcripts in injured muscle coincides with important events in regeneration ...141
LIX, a chemokine in muscle..142
TTP, a potential marker for activated SC...145

Summary and conclusions..148

References..153