List of tables

Chapter-1
Table-1.1: Comparative assessment of naturally occurring, synthetic and low-cost sorbent for effective arsenic removal.

Chapter-2
Table-2.1: International standards for drinking water quality parameters

Chapter-3
Table-3.1: Concentration of different ions added to aqueous solution of (a) As(V), and (b) As(III), at T = 30 (± 1.0) °C and pH = 7.0 (± 0.1)
Table-3.2: Summarized physical characteristic features of NHICO sample
Table-3.3: Kinetic model parameters for the sorption of As(V) by NHICO at pH_i = 6.4 (± 0.1) and T = 303 (± 1.6) K in the presence of some background ions occurring in groundwater.
Table-3.4: Pore and film diffusion coefficients calculated for As(V) sorption on NHICO at pH_i = 6.4 ± 0.1 and T = 30 ± 1.6 °C [As(V) added = 13.2 mg. g^{-1}].
Table-3.5: Modeled isotherm parameters estimated by the non-linear method of analysis of equilibrium As(V)-sorption data on NHICO at pH_i = 6.4 (± 0.1) and T = 25 (± 1.6) °C.
Table-3.6: Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(V) sorption on NHICO at pH_i = 6.4 ± 0.1 and at T = 303 ± 1.6 K.
Table-3.7: Thermodynamic parameters evaluated for As(V)-sorption by NHICO at different reaction temperatures (T = 283, 293, 303, 313 and 323) K and pH_i = 6.4 (± 0.1).
Table-3.8: Composition change of NHICO with change of igniting temperature (water loss data calculated from thermo gravimetric analysis).
Table-3.9: Kinetic parameters estimated for As(III) sorption reaction with NHICO at pH_i = 7.0 (± 0.2) and T = 30 (± 1.6) °C in presence of some ions occurring in groundwater (C_o = 5.0 mg As(III). L^{-1}).
Table-3.10: Kinetic parameters estimated for As(III) sorption reaction with NHICO at pH_i = 7.0 (± 0.2) and 30 (± 1.6) °C in presence of some ions occurring in groundwater (C_o = 12.9 mg As(III). L^{-1}).
Table-3.11: Pore and Film diffusion coefficients calculated for As(III) sorption reaction with NHICO at pH_i = 7.0 ± 0.2 and T = 30 (±1.6) °C.

Table-3.12: Isotherm modeled parameters estimated by non-linear method of analysis of equilibrium As(III) sorption data on NHICO at pH = 7.0 (± 0.2) and T = 25 (± 1.6) °C.

Table-3.13: Isotherm modeled parameters estimated by non-linear method of analysis of equilibrium As(III) sorption data on NHICO at pH = 7.0 (± 0.2) and T = 30 (± 1.6) °C.

Table-3.14: Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(III) sorption by NHICO at pH = 7.0 (± 0.2) and T = 30 (±1.6) °C.

Table-3.15: Thermodynamic Parameters Estimated for As(III) Sorption on NHICO at Different Reaction Temperatures (K) and at pH_i 7.0 (± 0.2).

Table-3.16(a): Some observed water quality parameters (mg.L⁻¹ except pH) of the field sample before treatment through the fixed bed of NHICO packed column.

Table-3.16(b): Some observed water quality parameters (mg.L⁻¹) of the field sample after filtration through the fixed bed of NHICO packed column at breakpoint.

Table-3.16(c): Thomas and Adams-Bohart model parameters from non-linear analysis of the breakthrough curves

Table-3.17(a): Observed parameters for the fixed-bed As(III) removal by NHICO column.

Table-3.17(b): Calculated parameters for the fixed-bed As(III) removal by NHICO column.

Chapter-4

Table-4.1: Concentration of different ions added to aqueous solution of As(V) (C_o = 6.5 mg. L⁻¹)/ As(III) (C_o = 5.5 mg. L⁻¹) at T = 30 (± 1.0) °C and pH_i 7.0 (± 0.1)

Table 4.2: Comparison of x-ray diffraction data of NIAO with relevant JCPDS International Centre for Diffraction data

Table 4.3: Variation of average particle size (nm) of incinerated NIAO

Table-4.4: Composition change of NIAO with change of incineration temperature. Water loss data calculated from thermo gravimetric analysis

Table-4.5: Some physical characteristic features of NIAO- 250 sample

xxix
Table-4.6: Kinetic model parameters for As(V) sorption by NIAO-250 at pH 7.0 (± 0.1) and temperature 30 (±1)°C in the presence of some co-occurring ions [C₀ = 6.5 mg As(V) L⁻¹]

Table-4.7: Pore and film diffusion coefficients calculated for As(V) sorption reaction with NIAO-250 at pH₁ = 7.0 ± 0.2 and T = 30 (±1)°C

Table-4.8: Isotherm parameters estimated by the non-linear fit method of equilibrium As(V) sorption data on NIAO-250 at pHₐ acidic 7.0 (± 0.2) and T = 30 (±1)°C.

Table-4.9: Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(V) sorption by NIAO-250 at pH = 7.0 (± 0.2) and at T = 30 (±1)°C.

Table-4.10: Thermodynamic parameters estimated for As(V) sorption by NIAO-250 at different reaction temperatures (K) at pH, 7.0 (± 0.2) in presence of some co-occurring ions [C₀ = 6.5 mg As(V) L⁻¹]

Table-4.11: Kinetic model parameters (significance of each term given in nomenclature) for the sorption of As(III) on NIAO-250 at pH 7.0 (±0.1) and temperature 30 °C in presence of different co-occurring ions (C₀ = 5.5 mg As(III) L⁻¹).

Table-4.12: Pore and film diffusion coefficients calculated for As(III) sorption reaction with NIAO-250 at pH₁ = 7.0 (±0.2) and T = 30 (±1)°C.

Table-4.13: The isotherm parameters estimated by the non-linear method of analysis of equilibrium As (III) sorption data on NIAO-250 at pH=7.0 (± 0.2) and T = 30 (±1.0)° C.

Table-4.14: Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(III) sorption on NIAO-250 at pH = 7.0 (± 0.2) and at T = 30 (±1.0)° C.

Table-4.15: Thermodynamic parameters estimated for As(III) sorption on NIAO-250 at different reaction temperatures (K) and pH, 7.0 (± 0.2) in the presence of ions co-occurring in groundwater (C₀ = 5.5 mg As (III) L⁻¹)

Table-4.16(a): Some analyzed water quality parameters (mg. L⁻¹, except pH) of the field sample before treatment through the fixed bed of NIAO-250 packed column.

Table-4.16(b): Some analyzed water quality parameters (mg. L⁻¹) of arsenic spiked field sample after filtration through the fixed bed of NIAO-250 packed column at breakthrough point.

Table-4.16(c): Thomas and Adams-Bohart model parameters from non-linear analysis of breakthrough curves

XXX
Table 4.17 (a): Observed parameters for the stationary fixed-bed arsenic removal by NIAO-250 column.
Table 4.17 (b): Calculated parameters for the stationary fixed bed arsenic removal by NIAO-250 column.

Chapter 5

Table 5.1: Concentration of different ions added to aqueous solution of As(V) ($C_0 = 6.5$ and 4.5 mg. L$^{-1}$)/ As(III) ($C_0 = 4.8$ mg. L$^{-1}$) at $T = 30$ (± 1.0)$^\circ$C and pH 7.0 (± 0.1)

Table 5.2: Comparison of x-ray diffraction data of NICMO with relevant JCPDS International Centre for Diffraction data.

Table 5.3: Variation of average particle size (nm) of incinerated NICMO

Table 5.4: Summarized physical characteristic features of NICMO sample

Table 5.5: Kinetic model parameters for As(V) sorption by NICMO at pH 7.0 (± 0.1) and temperature $T = 30$ (± 1.0)$^\circ$C in the presence of some co-occurring ions [$C_0 = 4.5$ mg As(V) L$^{-1}$].

Table 5.6: Pore and Film diffusion coefficients calculated for As(V) adsorption reaction with NICMO at pH$_i$ = 7.0 \pm 0.2 and $T = 30$ ($\pm 1)^\circ$C.

Table 5.7: Isotherm parameters estimated by the non-linear fit method of equilibrium As(V) sorption data on NICMO at pH$_i$ = 7.0 (± 0.2) and $T = 30$($\pm 1)^\circ$C.

Table 5.8: Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(V) sorption by NICMO at pH = 7.0 (± 0.2) and at $T = 30$($\pm 1)^\circ$C

Table 5.9: Thermodynamic parameters estimated for As(V) sorption by NICMO at different reaction temperatures (K) at pH$_i$ 7.0 (± 0.2) in presence of some co-occurring ions [$C_0 = 4.5$ mg As (V) L$^{-1}$]

Table 5.10: Kinetic model parameters for As(III) sorption by NICMO at pH 7.0 (± 0.1) and temperature 30 ($\pm 1)^\circ$C in the presence of some co-occurring ions [$C_0 = 4.8$ mg As (III) L$^{-1}$]

Table 5.11: Pore and film diffusion coefficients determined for As(III) sorption reaction with NICMO at pH$_i$ $= 7.0$ \pm 0.2 and $T = 30$ ($\pm 1)^\circ$C.

Table 5.12: Isotherm parameters estimated by the non-linear fit method of equilibrium As(III) sorption data on NICMO at pH$_i$ = 7.0 (± 0.2) and $T = 30$ ($\pm 1)^\circ$C. Table 5.13: xxxi
Dubinin-Radushkevich (D-R) isotherm parameters evaluated for As(III) sorption by NICMO at pH = 7.0 (±0.2) and at T = 30 (±1)°C

Table-5.14: Thermodynamic parameters estimated for As(III) sorption by NICMO at different reaction temperatures (K) and pH, 7.0 (± 0.2) in presence of some co-occurring ions [C₀ = 4.8 mg As (III) L⁻¹]

Table-5.15(a): Some observed water quality parameters (mg. L⁻¹, except pH) of the field sample before treatment through the fixed bed of NICMO packed column.

Table-5.15(b): Some analyzed water quality parameters (mg. L⁻¹) of arsenic spiked field sample after filtration through the fixed bed of NICMO packed column at break-through point. (Arsenic concentration at break through point: 0.01 mg. L⁻¹)

Table-5.15(c): Thomas and Adams-Bohart model parameters from non-linear analysis of breakthrough curves

Table- 5.16 (a): Observed parameters for the stationary fixed-bed As (III) removal by NICMO column.

Table- 5.16 (b): Calculated parameters for the stationary fixed-bed column for As (III) removal by NICMO.

Chapter-6

Table-6.1: Comparative study between monolayer sorption capacity obtained from batch experiment and column sorption capacity obtained from column experiment of different synthetic samples