REFERENCES


• Eker, I., Sliding mode control with PID sliding surface and experimental application to an electromechanical plant, ISA Transactions, 45 (2011) 109–118.

• Emelyanov, S.V., Variable Structure Control System(in Russian), Moscow: Nauka; also (in German), Oldenburg VerlagMunchen-Wien (1967).


• Karpenko, M. and Sepehri, N., Hardware-in-the-loop simulator for research on fault tolerant control of electrohydraulic actuators in a flight control application, Mechatronics, 19 (2009), 1067-1077.
• Knohl, T. and Unbehauen, H., Adaptive position control of electrohydraulic servo systems using ANN, Mechatronics, 10 (2000), 127-143.
• Lee, S.Y. and Blackburn, J.F., Contributions to hydraulic control – 1 steady-state axial forces on control valve pistons, Trans. ASME, 74 (1952) 1005-1011.
• Levant, A., Homogeneity approach to high-order sliding mode design, Automatica, 41 (2005) 823-830.
• Nakkarat, P. and Kuntanapreeda, S., Observer-based backstepping force control of an electrohydraulic actuator, Control Engineering Practice, 17(2009), 895–902.
• Rexroth Catalogue,RE 29 061/09, Engineering Mannesman-Rexroth Catalogue, 4/2 and 4/3 proportional directional valves directly controlled, with electrical position feedback Types 4WRE and 4WREE (2009).
• Sarkar,B. K., Das, J., Saha,R., Mookherjee,S. and Sanyal,D., Approaching Servo class Tracking Performance by a Proportional Valve-Controlled System, IEEE/ASME
transaction on Mechatronics (2013),DOI (identifier) 10.1109/TMECH.2013.2253116, Accepted for publication.


• Zulfatman and M.F. Rahmat, Application of self-tuning Fuzzy PID controller on industrial hydraulic actuator using system identification approach, International Journal on Smart Sensing and Intelligent Systems, 2(2) (2009), 246-261.