CONTENTS
CONTENTS

CHAPTER 1: GENOME ANALYSIS OF *Aedes aegypti*

1.1 Introduction

- **1.1.1 Mosquito: *Aedes aegypti* in particular**
 - (a) Classification
 - (b) Life cycle
 - (c) Mosquito-borne diseases
 - (d) *Aedes aegypti* - Justification of choosing the organism for our studies

- **1.1.2 Eukaryotic genome**

- **1.1.3 Insect genome**
 - (a) Base composition
 - (b) Genome size
 - (c) Repetitive DNA

- **1.1.4 DNA methylation**
 - (a) DNA methylation controls gene expression
 - (b) HPLC
 - (c) Restriction analysis

- **1.1.5 Highly repetitive DNA**
 - (a) Methods of analysis
 - (b) Function

- **1.1.6 Present studies**

1.2 Materials and Methods

- **1.2.1 Materials**

- **1.2.2 Methods**
 - (a) Isolation of total mosquito DNA
 - (b) Isolation of high molecular weight DNA
 - (c) Criteria of purity of DNA
 - (d) HPLC
 - (e) Restriction analysis
 - (f) Isolation and characterization of highly repetitive DNA
1.3 Results

1.3.1 HPLC

(a) Base composition
(b) Evaluation of 5 mC

1.3.2 Restriction digestion analysis

1.3.3 Highly repetitive DNA of Aedes aegypti

1.4 Discussion

References

CHAPTER 2 : CLONING AND SEQUENCING OF HIGHLY REPETITIVE DNA OF Aedes aegypti

2.1 Introduction

2.1.1 M-13 Coliphage and its host E. coli

2.1.2 Criteria for cloning and sequencing

2.1.3 Identification of recombinants

2.1.4 Advances in DNA sequencing

2.1.5 Sanger’s dideoxy technique

2.2 Material and Methods

2.2.1 Materials

2.2.2 Preparation of media and stock solutions

2.2.3 Cloning of the repetitive DNA into M-13 mp 11 RF

2.2.4 Transformation and characterization of recombinants

2.2.5 Isolation of single-strand DNA

2.2.6 Sequencing by Sanger’s dideoxy chain termination technique
(a) Primer-annealing reaction
(b) 'Dideoxy' reactions
(c) Casting the gel
(d) Loading the gel and electrophoresis
(e) Autoradiography

2.3 Results and Discussion

References

CHAPTER 3: ANALYSIS OF SOME HIGHLY REPETITIVE SEQUENCES OF Aedes aegypti FOR THEIR POSSIBLE FUNCTIONS

3.1 Introduction

3.1.1 What the sequence could mean?

3.1.2 Functions of known Drosophila repetitive DNA sequence

3.1.3 Present studies

3.2 Section I: Functional analysis of JOY 1

3.2.1 Materials and methods

(3.2.1.1) Materials
(3.2.1.2) Computer analysis
(3.2.1.3) Preparation of the probe
(3.2.1.4) DNA-DNA dot blot for copy number
(3.2.1.5) Isolation of total cellular RNA
(3.2.1.6) RNA-DNA dot blot to check transcription

3.2.2 Results and Discussion

3.3 Section II: Functional analysis of JOY 2

3.3.1 Material and methods

(3.3.1.1) Materials
(3.3.1.2) Extraction of total protein
(3.3.1.3) Preparation of double strand DNA from M-13 JOY 2 clone
(3.3.1.4) Gel retardation assay
3.3.3 Results and Discussion

3.4 Section III: Functional analysis of JOY 3

3.4.1 Material and methods

(3.4.1.1) Materials
(3.4.1.2) Preparation of JOY 3 probe
(3.4.1.3) Southern hybridization analysis
(3.4.1.4) Copy number of JOY 3

3.4.2 Results and Discussion

References