LIST OF FIGURES

1.1 (a) Map of the Deccan Volcanic Province showing the location of Kutch ... with respect of other sub-provinces. (b) Geological map of Kutch along with major geomorphic and tectonic features.

2.1 Map depicting the geology of the study area showing the occurrences of ... major igneous plugs, dykes and sills sampled in the present study. The lithostratigraphic units are after Biswas (1977).

2.2 Photograph of the alkaline plugs from the study area. (a) Large flat- ... topped hill constituting the igneous plug at Dinodhar Dongar, flanks marked by loose scree. (b) Spectacular columnar jointing exposed towards the center of the Dinodhar Dongar plug. (c) Conical-shaped hill, locally named as Pakhdai Dongar exposes an alkaline plug near Bhararap (d) Alkaline plug at Vethon that appears to be dissected in to two by a fault. (e) Conical hill constituting the Vichan plug near Sumrasar.

2.3 Satellite image of the terrain northeast of Sumrasar downloaded from ... http://www.wikiimap.com. The volcanic plugs from left to east are Vinchho Dongar, the Vichan Dongar and the Waral Dongar. Numerous linear dykes are also seen in the image.

2.4 Stereoscopic anaglyph of the terrain around Bhuj town created using ... Landsat 7 Thematic mapper (Band 1, 2, 4, 3 as blue, green, red respectively) image of February 2001 and digital elevation data acquired by the Shuttle Radar Topography Mission (SRTM) during February 2000. The Bhujia volcanic plug is seen towards the southeast of Bhuj town. The Badapir plug is seen as a small oval outcrop, northwest of Bhuj. Also notice the rugged terrain in the lower half of the anaglyph that constitutes a part of the Katrol hill - a major divide in Kutch (Courtesy: Visible Earth, NASA)

2.5 Stereoscopic anaglyph of the terrain northeast of Bhuj created using ... Landsat 7 Thematic mapper (Band 1, 2, 4, 3 as blue, green, red respectively) image of February 2001 and digital elevation data acquired by the Shuttle Radar Topography Mission (SRTM) during February 2000. The Habo hill - a large domal structure is clearly seen towards the upper left of the image. The dome is composed of limestone beds towards the center and is rimmed by erosion resistant beds of sandstones. The Kas hill is seen on the upper right of the anaglyph and appears to be tilted (to the south) and faulted (on the north). The prominent curvilinear ridges seen in the anaglyph are dykes. Two prominent alkaline plugs are seen in the anaglyph near Lodai. Also note the large alluvial fan built by the Kaswali River along the Banni plains and Rann. (Courtesy: Visible Earth, NASA)

2.6 Rose diagram depicting the (a) azimuth frequency, and (b) length ... percentage for 26 intrusions (dykes/sills) from the study area.

2.7 Photographs of some dykes from the study area. (a) Inclined alkaline dyke ... (Sk2a) exposed between the Waral and Vichan plugs near Sumrasar (b) Dyke (Sk2b) near Jakansay exhibiting positive relief Note the contrast
due to the dark tone of the dyke (c) Minor dyke-like intrusion (KJb1) north of Palanpur (d) Igneous intrusion in the form of a dyke (KJb2), southeast of Niruta dam along the flanks of the Jhura hills (e) Part of the vertical dyke (KPo1) exposed in the stream near Paiya forming a wall-like barrier.

2.7 (f) Close up of the vertically exposed part of Paiya dyke (KPo1) (g) Dyke (KPo3) near Paiya is bored at the base and tapers towards the top (h) Thin ~2m wide dyke (KPo4) is exposed in a stream 4 km north of village Paiya (i) Excavated parts of the Reldi sill (KR11) showing inclined columns (j) Small ridge-like dyke (KWD1) exposed on the way to village Wavdi.

2.8 Photographs of laccolith-like igneous intrusions from the study area. (a) ... 50 Laccolith like igneous intrusion (KS2) near Dhrangad exposed in a stream cut. Note the tilting of upper sedimentary sequence near the right hand side of the photograph. (b) The Dhrang laccolith attains a maximum thickness of ~20 m towards the central part. Note the horizontal bedded sequence of thick limestone and Dosa oolite in contrast to the tilted beds in the previous photos. Also note the sharp contact of the igneous intrusion with the sediments. (c) Small sill-like offshoot of the igneous intrusion at Dhrang (d) Angular xenoliths of limestone seen within the northern margin of the Dhrang laccolith (e) Essoxite sill near Dhrubliya plug. Note the lower contact of the sill and dip of the sediments.

2.9 Field photographs of some lava flows from the study area (a) Fine ... 55 entablature of the Kotoda flow exposed in a quarry (b) Flow exposed in the railway cutting near Roha. Note the entablature towards the upper half of the section (c) Large fracture within the flow exposed in railway cutting near Roha filled by breccia. (d) Basaltic flow exposed on the way to Samosra. Note the jointed nature of the flow exposed in the quarry.

2.10 Field photographs of some lava flows from the study area (a) Outcrop of ... 57 the Kukma flow exposing the fragmental nature of the basalt. Note the marl at the base of the section (b) Close-up of the contact between the base of the Kukma flow and the marl. Note the gradational contact between the basalt and the marl.

2.11 Field photographs of: (a) Lateritised hill near Nandra. Note the basaltic ... 59 hills in the background that have escaped the process of laterisation (b) Laterite profile developed on sandstone along the Kotoda-Matum拥pud highway (c) Close up of another lateritic profile exposed on the Kotoda-Matum拥pud highway.

3.1 Photomicrographs depicting common textures in spinel lherzolite ... 61 xenoliths. (a) Part of a large porphyroblast of olivine constituting the porphyroclastic texture. Also note the dark brown spinel in association with orthopyroxene and olivine (b) Equigranular xenomorphic texture seen in the spinel lherzolite xenolith. Note that the crystal boundaries of olivines and pyroxenes meet at triple junctions. Photomicrographs between crossed nichols (BXN).
3.2 Classification of spinel bearing peridotite xenoliths from different plugs ... 63
from Kutch. Note that the xenoliths plot in the lherzolite and harzburgite + dunite fields.

3.3 Photomicrographs in of mineral phases within the orthopyroxenes from ... 65
spinel lherzolite xenoliths from Sayala Devi plug (a) anomalous birefringent acicular rutile crystals aligned along the cleavage planes of the orthopyroxene (b) small inclusion of brown spinel platelet within the orthopyroxene crystal.

3.4 Morphology of spinels in lherzolite xenoliths. (a) Typical brown, holy ... 66
leaf shaped spinel in the lherzolite xenoliths from Dhrubiya plug (b) Brown spinel mantling the orthopyroxene crystal in the spinel lherzolite xenolith (c) Spinel mantled by a dark rim of alteration due to infiltrating melt(?) in spinel lherzolite xenoliths from Dhrubiya. All photomicrographs in plane polarised light (PPL).

3.5 Photomicrographs (BXN) illustrating the xenolith-melt interaction. ... 67
(a) Part of a spinel lherzolite xenolith showing the reaction around the orthopyroxene grain. Also note the lack of reaction between the large olivine grain and melt towards the left of the photograph (b) Fine aggregate of minerals surrounding the orthopyroxene grains formed due to melt-xenolith reaction. Also note the reaction rim around a fragment of the orthopyroxene grain towards the lower left corner of the photomicrograph.

3.6 Photomicrographs of melanephelinite-basanite rocks from Kutch. ... 69
(a) Seriate textured rock from Dinodhar Dongar showing various size and shapes of olivine and clinopyroxene phenocrysts. Note the hour glass zoning in the clinopyroxene near the right center of the photograph. Also note the large brown opaque crystals in the rock, some showing sieved structure (b) Glomerophyric aggregate of olivine and clinopyroxenes in the basanite rock from Dhram, Najkhrana. Both photomicrographs BXN.

3.7 Xenocrystic minerals in the melanephelinite-basanite rocks from Kutch ... 70
(a) Photomicrograph in PPL showing xenocryst of olivine in the melanephelinite rock from Dhrubiya. Also note the large patch of nepheline towards the lower margin of the olivine xenocryst. (b) Photomicrograph in PPL of large xenocryst of opaque mineral in the basanite plug at Dinodhar Dongar. Compare the smaller opaque grains in the groundmass.

3.8 Photomicrographs depicting the variation in the grain size, texture and ... 75
mineralogy of some dykes from the study area. (a) Fine grained dyke rock from near Sunrasar (Ssk2a). Note the patches of calcite within the rock. (b) Photomicrograph of lamproite dyke near Palanpur (Badi-Kjb1) showing phlogopite and clinopyroxene phenocrysts. Note the fine opaque crystals of pervoskite in the section. (c) Zoned pervoskite and opaque in the core of the lamproite dyke (d) Aggregates of pervoskite crystals and acicular apatite in the core of the lamproite dyke

(iii)
(e) Lamproite dyke margin (KJb2) showing large euhedral crystals of high relief pervoskite grains set in a quartz rich matrix. (f) Lamproite dyke margin showing the development of a composite of radiating and branched clinopyroxene crystals. The curved clinopyroxene crystals define a crumple layering in the margin of the intrusion.

3.9 Photomicrographs depicting the variation in the grain size, texture and mineralogy of lamproitic dyke (Sk2b) from near Srumzar. (a) Olivine pseudomorphs after calcite in fine-grained groundmass. Note the well-preserved euhedral form of olivine. (b) Close-up of one of the olivine pseudomorph in the lamproitic dyke. Note the fine-grained groundmass around the pseudomorph in the section. (c) Large oval olivine pseudomorph with development of fibrous serpentine along cracks. Large oval olivine crystals such as the one depicted in the photomicrograph are typical of kimberlite texture. (d) Close-up of the same olivine pseudomorph showing embayment of groundmass. (e) Groundmass of lamproitic dyke showing small crystals of high relief pervoskite grain. (f) Aggregates of translucent pervoskite crystals rimming large opaques in the lamproitic dyke.

3.10 Photomicrographs depicting the variation in the grain size, texture and mineralogy of some sills/dykes from the study area. (a) Olivine phenocrysts from the laccolith (KDS2) near Dhrang. (b) Holocristalline rock from the essexe sill (KEx) near Dhubiya Dongar showing the presence of olivine, clinopyroxene and plagioclase. (c) Coarse grained essexe showing the sub-ophitic relationship between clinopyroxene and plagioclase crystals. (d) Fine-grained rock (KR1) from the Moti Reddi sill. Note the patches of reddish brown glass in the microsection. (e) Large microphenocrysts of plagioclase crystal set in a fine grained groundmass of plagioclase, clinopyroxene, opaques and glass from the Reddi sill. (f) Medium grained dyke rock (KW41) from Wavdi showing the simple mineralogy of plagioclase, pyroxene ad opaques constituting the tholeiite rock.

3.11 Photomicrographs of lava flows from the study area. (a) Seriate texture seen in the basaltic flow from Kotada (KCo1) (b) Large phenocryst of olivine in the Kotada flow (c) Euhedral olivine crystal in the clinopyroxene-opaque-nepheline groundmass constituting the basanite flow (KM2) near Roha (d) Patches of fibrous primary calcite in the basanite flow (KM2) (e) Fine grained matrix of the basalt flow (Rh1) exposed in railway cutting near Roha (f) Fine grained basalt in plane polarised light from the Zukma flow (KBS1) showing small microphenocryst of plagioclase in a fine-grained matrix consisting of plagioclase, clinopyroxene and glass.

4.1 (a) Olivine Mg# vs. modal olivine for spinel lherzolite xenoliths from different plugs from Kutch depicting the relation between melt depletion and residual peridotite composition. The oceanic trend (arrows) is after Boyd (1989) (b) Positive co-relation between modal orthopyroxene and Ni from olivine similar to the observed by Boyd (1997).
4.2 Positive correlation between Mg# of olivine and pyroxenes ... 107
(clinopyroxene and orthopyroxene) from the spinel lherzolite xenoliths from Kutch indicating the control of partial melting on chemical equilibrium between the two phases.

4.3 Trace element variations in olivines from ultramafic spinel bearing ... 108 xenoliths from different plugs from Kutch.

4.4 Classification of pyroxenes in the system CaMgSi_2O_6-CaFeSi_2O_6 ... 110 MgSi_2O_6-Fe_2SiO_4. Note that the samples from the spinel lherzolite xenoliths plot in the Diopside and Enstatite-Bronzite fields.

4.5 Positive correlation between Mg# of olivine and pyroxenes ... 130 (clinopyroxene and orthopyroxene) from the spinel lherzolite xenoliths from Kutch indicating the control of partial melting on chemical equilibrium between the two phases.

4.6 Trace element variations in orthopyroxenes from spinel bearing ultramafic xenoliths from different plugs from Kutch. ... 131

4.7 Primitive mantle normalised trace element and REE content diagram of ... 146 clinopyroxenes from spinel lherzolite xenoliths (a) Dinodhar Dongar, (b) Sayala Devi plugs from Kutch.

4.8 Primitive mantle normalised trace element and REE content diagram of ... 162 clinopyroxenes from spinel lherzolite xenoliths (a) Bhujia, (b) Dhrubiyal and Lofalai plugs from Kutch.

4.9 Al_2O_3 content against concentrations of major oxides from the ... 164 clinopyroxenes in spinel lherzolite xenoliths from Kutch.

4.10 Trace element variations in clinopyroxenes from ultramafic spinel bearing ... 166 xenoliths from different plugs from Kutch.

4.11 Trace element variations in clinopyroxenes from ultramafic spinel bearing ... 168 xenoliths from different plugs from Kutch.

4.12 Plot of 100 Mg/(Mg + Fe^2+) vs. 100 Cr/(Cr + Al) showing compositional ... 177 variation in spinels from ultramafic xenoliths from Kutch (after Irvine and Findley, 1972). Note the distinct populations of spinels, corresponding to the two populations of xenoliths.

4.13 (a) Plot of Cr# spinel vs. Cr# clinopyroxene from spinel lherzolite ... 178 xenoliths from Kutch. (b) Plot of Cr# vs. Mg# from spinel for lherzolite xenoliths from Kutch. Spinel compositions from abyssal peridotites are from Dick and Bullen (1984). The model partial melting curve is from Aldanmaz et al., (2005) who used the numerical expression of Helbig et al., (2001) to calculate the average degree of partial melting.

4.14 Melting models with (a) Y vs. Yb and (b) Nd vs. Yb concentrations of ... 184 clinopyroxenes from spinel lherzolite xenoliths from Kutch. The subscript 'n' indicates that the elemental concentrations have been normalised to primitive mantle compositions.
4.15 Melting models with (a) Y vs. Ti/Ti, (b) Zr vs. Ti and (c) Nb vs. Yb ... concentrations of clinopyroxenes from spinel lherzolite xenoliths from Kutch. The subscript 'n' indicates that the elemental concentrations have been normalised to primitive mantle compositions.

5.1 Total Alkali Silica (TAS) classification diagrams for samples from Kutch ... (after Verma et al., 2002)

5.2 MgO-K₂O-Al₂O₃ diagram for lamproites from Kutch (filled circles). ... 194 Fields for kimberlites, lamproite and lamprophyres from Bergmann (1987). Squares represent samples from Krishna lamproites (Paul et al., 2007).

5.3 FeO-Al₂O₃-MgO diagram for lamproites from Kutch (filled circles). ... 195 Fields for kimberlites, lamproite and lamprophyres after Cornelissen and Verwoerd (1975) and Komproebt (1994). Squares represent samples from Krishna lamproites (Paul et al., 2007).

5.5 Plots of (a) La vs. Nb, and (b) Ce vs. Y for lamproites from Kutch (filled ... 198 circles). Fields for kimberlites, lamproite and lamprophyres from Chalapathi Rao et al., (2004). Squares represent samples from Krishna lamproites (Paul et al., 2007).

5.6 (a) Nb vs. Zr plot for lamproites from Kutch. Field for kimberlite and ... 199 lamproites (after Scott-Smith and Skinner, 1984) (b) La/Yb vs. Sm for Indian Kimberlites and Spanish lamproites (after Nixon et al., 1984). Majghavan and other Indian Kimberlite fields after Paul et al. (2006).

5.7 Primitive mantle normalised trace element and REE content diagram of ... 201 (a) lamproite and (b) melaneephelinite from Kutch. Primitive mantle values are taken from Hoffman (1988).

5.8 Normative albite against normative nepheline plots for melaneephelinite, ... 204 basanites from Kutch (LeBas, 1989).

5.9 Mg-number variation diagrams for selected major oxide for samples from ... 205 Kutch.

5.10 FeO/MgO-TiO₂ diagram for rocks from Kutch. The fields in the upper ... 206 diagram are after Glassley (1974), Miyashiro (1975) while the fields in the lower diagram are from Muller (1980).

5.11 MgO-FeO-Al₂O₃ diagram for rocks from Kutch (after Pearce et al., ... 207 1977).

5.12 AFM plot of rocks from Kutch (after Irvine and Baragar, 1971) ... 208
5.13 Primitive mantle normalised trace element and REE content plot for ... 216
(a) basanites, and (b) alkali basalts from Kutch. Primitive mantle values are taken from Hoffman, (1988).

5.14 10sMgO-TiO2-10P2O5 plot of sub-alkaline basalts from Kutch (after ... 226
Mullen, 1983).

5.15 Primitive mantle normalised trace element and REE content diagram of ... 228
(a) High-Ti basalt, and (b) Low-Ti basalt from Kutch. Primitive mantle values are taken from Hoffman (1988).

6.1 (a) Mg# in olivine vs. modal olivine in volume percent for Kutch ... 243
peridotite xenoliths. Field for Wiedeman Fjord, eastern Greenland after
Bernstein et al. (1998) and Ubekendi, Eiland, west Greenland from
Bernstein et al. (2006). Compositional fields for mantle peridotite from
Archean cratons (xenoliths) and Proterozoic and Phanerozoic origins
(xenoliths, orogenic massifs, ophiolites and abyssal peridotites) after
Boyd (1989) and Menzies (1999) (b) Cr# spinel vs. modal olivine for
Kutch peridotite xenoliths. Fields for Kaapvaal from Hervig et al. (1980),
Boyd et al. (1999) and Tanzania from Lee and Rudnick (1999).

6.2 Plot of Cr# spinel vs. Mg# olivine from spinel lherzolite xenoliths from ... 246
Kutch. Fields of abyssal (ocean ridge) peridotites are from Dick and
Bullen (1984) while those from oceanic supra-subduction zone (ssz)
peridotites and passive continental margin peridotites are from Pearce et
al. (1999). The olivine-spinel mantle array and the melting trend are from

6.3 Location of kimberlite fields and lamproite in India. Cratonic boundaries ... 249
modified after (Naqvi and Rogers, 1987). KLF-Krishna Lamproite field,
RLF-Ramadugu Lamproite field, NLF-Narayanpet Lamproite field, MKF-
Mahboubagar Kimberlite filed, WKF-Wajrakarur Kimberlite field,
MKF-Mainpur Kimberlite field, TKF-Tokkapal Kimberlite field, PDB-
Panna Diamond Belt. Note the location of the newly described Badi
Lamproite field (BLF).

6.4 a) Zr/Hf vs. Nb/Ta in major terrestrial silicate reservoirs indicating Nb ... 253
deficit with respect to Ta in the accessible silicate Earth (from Münker et
al. 2003). The silicate differentiation line indicates a first order coupling
of Nb/Ta Zr/Hf fractionation in terrestrial reservoirs that is in agreement
with the partitioning behaviour of the HFSE. The intersection of this line
with the chondritic Zr/H ratio defines the Nb/Ta ratio of the BSE. Note
the scatter in the Kutch basanites (b) Zr/Hf vs. Nb/Ta in ocean island
basalts. Note the decoupled nature of the Kutch samples i.e. Nb/Ta
remains fairly constant with variable Zr/Hf. Data source: MORB (Büth et
al 2002), average continental crust (Barth et al. 2000) and chondrite from
Münker et al (2003). The arrow indicates the shift in Zr/Hf and Nb/Ta
that results from 30% clinopyroxene fractionation (Pflünder et al, 2007).

6.5 (a) Zr/Nb vs. Ce/Y for the Kutch samples. The continuous lines are the ... 254
non-modal fractional melting curves calculated (Hardson and Filton,
1991) for four mantle compositions, GD- depleted garnet lherzolite, GP-primitive garnet lherzolite, SD- depleted spinel lherzolite, SP- primitive spinel lherzolite. Numbers on the lines refer to percentage of melt. (b) La/Yb vs. Tb/Yb plot for the Kutch samples. Continuous lines are for melting of Fertile Lherzolitic mantle, the contours representing the amount of modal garnet (after Macdonald et al., 2001).

6.6. (a) 143Nd/144Nd and 87Sr/86Sr isotope plot for Deccan and related samples. ... 260 Source data: Deccan basalt fields (Lightfoot and Hawkesworth, 1988) Bhuj, Mundwara, Ambadongar and Samu-Dandali samples (Simonetti et al., 1998), Dhraibiya and Sisagar samples (Krishnamurthy et al., 1989) (b) 143Nd/144Nd and 87Sr/86Sr isotope correlation plot, showing the main oceanic mantle components of Zindler and Hart (1986). The mantle array is defined by many MORB and ocean island basalts, and Bulk Earth values of 143Nd/144Nd and 87Sr/86Sr can be observed from this trend (Faure, 1986, 2001; Dickin, 1995).

6.7 Comparisons between the trace element chemistry of the ultramafic ... 262 xenoliths (diopside) and melanephelinite-basanite rocks from Kutch (after Karmalkar et al., 2005).

6.8 Geotherm of the western continental margin of India (after Dessai et al., ... 271 2003) using the xenolith data of Murad and Kutch. Also shown is the geotherm of South East Australia (SEA) after the Bullenmerri/ Gnotuk xenolith data (O'Reilly and Griffin, 1985).

6.9 Schematic section across central Kutch depicting the lithosphere- ... 272 asthenosphere boundary and the origin of different types of magmatism. The lamproite magmatism is shown to be derived from at or above the lithosphere-asthenosphere boundary from metasomatized garnet harzburgite or metasomatised cratonised keel.
