# CONTENTS

**ABBREVIATIONS**

**ABSTRACT**

**PUBLICATIONS**

**CHAPTER 1:**

**INTRODUCTION**

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2. Gene Based Therapeutic Drug Design</td>
<td>2</td>
</tr>
<tr>
<td>1.2.1. Advantages of Oligonucleotides for Chemical Genetics</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Antisense Oligonucleotide Modifications</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Peptide Nucleic Acids</td>
<td>9</td>
</tr>
<tr>
<td>1.4.1. Peptide Nucleic Acid: Targeting Double Stranded DNA</td>
<td>10</td>
</tr>
<tr>
<td>1.4.2. PNA Complex Stability</td>
<td>11</td>
</tr>
<tr>
<td>1.4.3. Structure of PNA Complexes</td>
<td>12</td>
</tr>
<tr>
<td>1.5. Chemical Modifications of PNA</td>
<td>13</td>
</tr>
<tr>
<td>1.5.1. Construction of Bridged PNA Structures</td>
<td>17</td>
</tr>
<tr>
<td>1.5.2. PNA with Five Membered Nitrogen Heterocycles</td>
<td>18</td>
</tr>
<tr>
<td>1.5.3. PNA with Six Membered Ring Structures</td>
<td>24</td>
</tr>
<tr>
<td>1.6. Modified Nucleobases</td>
<td>27</td>
</tr>
<tr>
<td>1.7. Biological Applications of PNA</td>
<td>28</td>
</tr>
<tr>
<td>1.7.1. Inhibition of Transcription</td>
<td>29</td>
</tr>
<tr>
<td>1.7.2. Inhibition of Translation</td>
<td>30</td>
</tr>
<tr>
<td>1.7.3. Inhibition of Replication</td>
<td>32</td>
</tr>
<tr>
<td>1.7.4. Interaction of PNA with Enzymes</td>
<td>33</td>
</tr>
<tr>
<td>1.7.5. PNA as a Molecular-Biological Tool</td>
<td>35</td>
</tr>
<tr>
<td>1.7.6. PNA Hybridization as alternative to Southern Hybridization</td>
<td>36</td>
</tr>
<tr>
<td>1.7.7. PNA Assisted Rare Cleavage</td>
<td>37</td>
</tr>
<tr>
<td>1.7.8. Artificial Restriction Enzyme System</td>
<td>38</td>
</tr>
<tr>
<td>1.7.9. Determination of Telomere Size</td>
<td>39</td>
</tr>
<tr>
<td>1.7.10. Nucleic Acid Purification</td>
<td>39</td>
</tr>
</tbody>
</table>
CHAPTER 2:
SYNTHESIS OF (2R/S,5S/R)-1-(N-BOC-AMINOETHYL)-5-(THYMIN-1-YL)PIPECOLIC ACID: SYNTHESIS AND DNA BINDING STUDIES

2.1. Introduction 71
2.1.1. Present work: A Rationale 73
2.2. Results and Discussion 75
2.2.1. Synthesis of Protected Nucleobases 77
2.2.2. Synthesis of Aminoethylpipecoly PNA Monomers 78
2.2.3. Hydrolysis of Esters 81
2.2.4. Synthesis of Aminoethylglycyl PNA Monomers 82
2.2.5. \( pK_a \) Determination 84
2.2.6. Solid Phase Peptide Synthesis 85
2.2.7. Cleavage of the PNA Oligomers from the Solid Support 89
2.2.8. Purification of the PNA Oligomers 90
2.2.9. Synthesis of Complementary Oligonucleotides 93
2.3. Biophysical Spectroscopic Techniques for Studying PNA-DNA Interactions 94
2.3.1. UV-Studies 94
2.3.2. Circular Dichroism 98
2.3.3. Gel Electrophoresis 98
2.4. Results
2.4.1. Homopyrimidine PNA Sequences: UV Studies
2.4.2. UV-T_m Studies in Duplexes
2.4.3. CD Studies: Effect of Chiral PNAs
2.4.4. Gel shift assays
2.5. Discussion
2.5.1. UV-Spectroscopy
2.5.2. CD Spectroscopy
2.5.3. Gel Retardation Assays
2.6. Comparision of aepIPNA and pip-PNA
2.7. Summary
2.8. Experimental
2.9. References
2.9. Appendix

CHAPTER 3:
APPLICATIONS OF BIS-PNA FOR TARGETTING
COMPLEMENTARY DNA: EFFECT OF N7G IN aeg/aep PNA BACKBONE

3.1. Introduction
3.2. Rationale for the Present Work
3.3. Objectives
3.4. Present Work
3.4.1. Synthesis of Protected Nucleobases
3.4.2. Synthesis of Protected Monomeric Aminoethyl Prolyl PNA
3.4.3. Hydrolysis of Esters
3.4.4. Synthesis of Linker
3.4.5. Design and Synthesis of Hairpin bisPNA Oligomers
3.4.6. Cleavage from the Solid Support
3.4.7. Purification
CHAPTER 4:

SECTION A: SYNTHESIS AND BIOPHYSICAL EVALUATION OF FLUORESCENT PNAs

SECTION B: INDUCTION OF CHIRALITY IN ACHIRAL aegPNA
CHAPTER 5:

APPLICATIONS OF ISOThERMAL TITRATION CALORIMETRY TO STUDY BIOMOLECULAR INTERACTIONS: \textit{aeg/aep/aepip PNA:DNA HYBRIDS, ENZYME/NUCLEOSIDES BINDING TO NANOPARTICLES, AND CHIRAL RECOGNITION OF DNA BY AMINO ACID-MODIFIED GOLD NANOPARTICLES}

5.1. Introduction to Isothermal Titration Calorimetry and Applications 262

5.2. Measurement of Thermodynamic Parameters by ITC 262

5.2.1. ITC Instruments 262

5.2.2. Interpretation of Thermodynamics: Binding Parameters 264
Section I: Thermodynamic Study of PNA/DNA Interactions

5.3. Present Work: Rationale 271
5.4. Results and Discussions 272
5.5. Conclusions 282

Section II: Nucleosides Binding on Keggin Nanoparticles

5.6. Present Work: Rationale 283
5.7. Results and Discussions 284
5.8. Conclusions 288

Section III: Chiral Recognition of DNA by Amino Acid-Modified Gold Nanoparticles

5.9. Present Work: Rationale 290
5.10. Results and Discussions 291
5.11. Conclusions 295

Section IV: Study of Fungal Protease Binding to Gold Nanoparticles

5.12. Present Work: Rationale 297
5.13. Results and Discussions 298
5.14. Conclusions 305
5.15. Experimental 305
5.16. References 313
5.17. Appendix 321