
 

 

 
 
 
 
 
 
 

Chapter  5 
 
 

Third  Order  Nonlinear  Delay 

Difference Equation-II 



 

5.  Third  Order  Nonlinear  Delay  Difference 
 

Equation-II 
 
 
 

 

5.1  Introduction 
 
 

In this chapter, we continue our study on the oscillation of more general third order 
 

nonlinear delay difference equation of the form 
 

∆ 
.

an (∆ (bn(∆xn)α))
β 
. 

+ qnf (xn 

 
 
 

−τ ) = 0, n ∈ N0, (5.1.1) 

 
 

subject to the following conditions: 

 

(C1) {an},  {bn} and {qn} are positive real sequences; 

(C2) α and β are ratio of odd positive integers; 

 

(C3) τ is a nonnegative integer; 

 

(C4) f : R → R is continuous functions such that  uf (u)  > 0 for u = 0 and 

−f (−uv) ≥ f (uv) ≥ f (u)f (v) for uv > 0. 

 

By a solution of equation (5.1.1), we mean a real sequence {xn} and satisfying 

equation (5.1.1) for all n ∈ N0.  We consider only those solution {xn} of equation 

(5.1.1) which satisfy sup{|xn| : n ≥ N } > 0 for all n ≥ N ∈ N0. 

 

In [34, 62], the authors studied the third difference equation (5.1.1) when α = 

β = 1 and established  some oscillation and asymptotic behavior of solution, and in 

[60], the authors considered the oscillatory and asymptotic behavior of solutions of 

the equation (5.1.1) when β = 1.  Motivated by this observation, in this chapter 

we obtain some sufficient conditions for the oscillation of all solutions of equation 

(5.1.1). 
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In Section 5.2, we establish some sufficient conditions for the oscillation of all so- 

lutions of equation (5.1.1) and in Section 5.3, we present some examples to illustrate 

the main results. The results obtained in this chapter complement and generalize 

the results established in [34, 60, 62]. 

 

5.2  Oscillation Theorems 
 

In  this section, we  establish some  new oscillation theorem for equation (5.1.1). 

Throughout this chapter we use the following notations without further mention: 
 

 
δn,n0 

= 

n−1 . 
 

 
s=n0 

n 

 
−1/α 

s 

δn = 
. 

a−1/β
 

 
 

and 

s=n0 

 
 

n 

δ
 

n  = 
. 

b−1/β
 

 

 

We begin with the following lemma. 

s=n0 

 
 

Lemma 5.2.1. Assume that for all sufficiently large N1  ∈ N0, there is a N > N1 

such that n − τ > N1  for n ≥ N and 

 

(H1) either 
∞ . 

 

1/β
 = ∞ (5.2.1) 

 

 

or 
∞  

. 
n 

s=n0 
as  

 
.1/β 

 
 

 
(H2) either 

. 
−1/β 
n 

n=N 

. 
qsf (δ

1/α 
)f (δs 

s=N 

τ,N ) = ∞; (5.2.2) 

∞ . 
 

1/α
 = ∞ (5.2.3) 

 

 

or 
∞  

  
n 

s=n0 
bs 

 
. 

s 

 

 
 

.1/β 

 
 
1/α 

. 
b−1/α  

. 
a−1/β 

. 
qtf (δs   τ )

  = ∞ (5.2.4) n 

n=n0 

s 

s=n0 

− 

t=s0 
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a 

a 

 
 

hold. Let {xn} be an eventually positive solution of equation (5.1.1). Then one of 
 

the following two cases holds: 
 

 

(i) ∆xn > 0, ∆(bn(∆xn)α) > 0 for all n ≥ N ; 

 

(ii) ∆xn < 0, ∆(bn(∆xn)α) > 0 
 

for all n ≥ N. 

 

Proof. Let {xn} be a positive solution, from the equation (5.1.1), we have 

 

∆ 
.

an (∆ (bn(∆xn)α))
β 
. 

= −qnf (xn −τ ) < 0  for  n ≥ n1. 
 

 

Consequently (∆ (bn(∆xn)α))
β  

is strictly decreasing and then ∆xn and ∆ (bn(∆xn)α) 

are eventually  of  one sign. We   claim  that  ∆(bn(∆xn)α) > 0. If not, then we 

have two cases: 

Case(i).  There exists n2 ≥ n1, sufficiently large, such that 

 

∆xn > 0,  and ∆(bn(∆xn)α) < 0  for  n ≥ n2. 

 

Case(ii).  There exists n2 ≥ n1, sufficiently large, such that 

 

∆xn < 0,  and ∆(bn(∆xn)α) < 0  for  n ≥ n2. 

 
 

For the Case(i), we have bn(∆xn)α  is strictly decreasing and there exists a negative 

constant M such that 

 

an (∆ (bn(∆xn)α))
β  

< M  for all  n ≥ n2 

 
 

or 
 

∆ (bn(∆xn)α) < 

 

 

M 1/β 

1/β  
. 

n 

Summing from n2 to n − 1, we get 
 
 
 

n−1  
1

 

bn(∆xn)α  ≤ bn  (∆xn )
α  + M 1/β  

.   
. 

2  2  1/β 
s=n2     

s 
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. 
b−1/α

 b 

s 

s 

3 

n−τ 

a 

a
1/β

 

α 

 
 

Letting n → ∞ and using (5.2.1) then bn(∆xn)α  → −∞, which contradicts that 
 

∆xn > 0. Hence (5.2.2) is satisfied, we have 

n−1 . 
xn − xn3  

= 
 

 
s=n3 

n−1 

∆xs 

= s ((∆xs)
α

 )1/α 1/α 
s 

s=n3  

n−1 

≥  (bn(∆xn)α)1/α  
. 

b−1/α
 for all  n ≥ n3, 

 

 

and hence 

s=n3 

 

n−1 

xn  ≥  (bn(∆xn)α)1/α  
. 

b−1/α
 

 

for all  n ≥ n3 

s=n3 

≥  (bn(∆xn)α)1/αδn,n 

 

for all  n ≥ n3. 
 

 

There exists a n4 ≥ n3 with n − τ ≥ n3 for all n ≥ n4 such that 
 

 

xn−τ   ≥ (bn−τ (∆xn−τ ) )1/α δn−τ,n3 
for all  n ≥ n4. 

 

 

From equation (5.1.1) 
 

 

0 ≥ ∆(an(∆yn)β ) + qnf (y
1/α 

)f (δn −τ,n3 
)  for all  n ≥ n4  (5.2.5) 

 

 

where yn = bn(∆xn)α.  It is clear that yn > 0 and ∆yn  < 0. It follows that 

 

∆(an(∆yn)β ) ≤ 0 for all  n ≥ n4. 

 

Summing from n − 1 to n4, we get 

 

an(∆yn)β − an  (∆yn )
β  ≤ 0 

4  4 

 
 

or 

−an(∆yn)β  ≥ −an (∆yn )
β 

4  4 

 
or 

∆yn  ≥ 
−

 

 
 

n4   (∆yn4 
) 

1/β 
n 

 
 

for all  n ≥ n4. 
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n4  n4  5 4 4 5 

a 

s 

1 

 
 

Summing the last inequality from n to ∞, we obtain 
 

∞  1/β
 

−[y∞ − yn] ≥ − 
. as4   (∆ys4 

) 
1/β

 

s=n as 

 

or 
∞ 

yn ≥ −a1/β (∆yn ) 
. 

a−1/β 

 

 
hence 

n4  4 s 

s=n 

 

yn ≥ −a1/β (∆yn )δn
 

n4  4 

 
or 

yn ≥ k1δn for all  n ≥ n5 

 

where k1 = −a
1/β 

(∆y   ) > 0. There exists a n  ≥ n  with n − τ ≥ n  for all n ≥ n 
 

such that 
 

yn−τ  ≥ k1δn−τ for all  n ≥ n5. 
 

Summing (5.2.5) from n5 to n − 1 and using the above inequality, we get 

n−1 . 
qsf (y

1/α 
)f (δs

 
τ,n  ) ≤ an  ∆(yn )

β − an∆(yn)β 

 
s=n5 

 

or 

 
 
 
 

n−1 

s−τ  −  3  5  5 

. 
qsf (k

1/α
δ

1/α β
 

 

 
s=n5 

1 s−τ )f (δs−τ,n3 
) ≤ −an∆(yn)  . 

Now using the condition (C4) we have 
 

n−1 . 
qsf (k

1/α
)f (δ

1/α 
)f (δs

 

 

τ,n  ) ≤ −an∆(yn)β 

 
s=n5 

 

or . 
f (k

1/α
 

1 

 
 
 

n−1
 

s−τ −  3 
 

 
 

.1/β 

  1    ) 
. 

q f (δ
1/α 

)f (δ
 

)  ≤ −∆(y  ).
 

an 
s=n5 

s−τ s−τ,n3  n 

Summing the above inequality from n5 to ∞, we get 
 

∞ 

(f (k
1/α

))1/β 
. 

. 
s−1 . 

q f (δ
1/α

)f (δ
 

.1/β 

)  ≤ y < ∞
 

1  1/β 
s=n5     s 

t 

t=s5 

t−τ t−τ,t3  n5 
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b 

s 

s 

b α 

α 

 
 

which contradicts the condition (5.2.2). 

For the Case(ii), we have 

 

bn(∆xn)α  ≤ bn  (∆xn )
α  = c < 0 

2  2 

 
 

or 

∆xn ≤ 

 

 

c1/α 

1/α 
. 

n 

Summing the last inequality from n2 to n − 1, we get 
 

n−1 

xn  ≤ xn2   
+ c 

1/α  
.

 
 

s=n2 

b−1/α. 

 

Letting n → ∞, then (5.2.3) yields xn   → −∞.  This contradicts that  xn   > 0. 

Otherwise, if (5.2.4) is satisfied. One can choose n3  ≥ n2  with n − τ ≥ n2  for all 

n ≥ n3 such that 
n−1 

xn  ≥ −(bn(∆xn)α)1/α  
. 

b−1/α
 

s=n3 

or 
n−τ −1 

 
 

 
hence 

xn−τ   ≥ −(bn−τ (∆xn−τ ) )1/α 
. 

 

 
s=n3 

−1/α 
s 

 

xn−τ   ≥ k2δn−τ for n ≥ n3 

 
where k2 = −(bn−τ (∆xn−τ ) )1/α . Then equation (5.1.1) and (C4) yield. 

 

∆ 
.

an (∆ (bn(∆xn)α))
β 
. 

= −qnf (xn 

 

−τ ) 

 

≤  −qnf (k2δn−τ ) 

≤  −qnf (k2)f (δn−τ ) 

 
 

or 

∆ 
.

an (∆ (bn(∆xn)α))
β 
. 

≤ qnLf (δn 

 

 
 

−τ ), 
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s 

b 
a 

b s ( 

− 

− 

 
 

where L = −f (k2), summing the above inequality from n3 to n − 1, we get 

n−1 

an (∆ (bn(∆xn)α))
β  ≤ L 
. 

qsf (δs   τ ) 
s=n3 

 

or 
 

∆ (bn(∆xn)α) ≤ L
1/β  

. 
n−1 . 

qsf (δs   τ ) 
a

1/β  − 

.1/β 
 

. 
n  s=n3 

Summing the last inequality from n3 to n − 1, we have 

n−1 

bn(∆xn)α  ≤ L1/β  
. 

a−1/β
 

s=n3 
 

or 

. 
s−1 . 

qtf (δt 

t=n3 

 
 

−τ ) 

.1/β 

 
 
 
 
 

1/α
 

 

∆xn ≤ 

 

L1/αβ 

1/α 
n 

 
n−1 . 

 
 

s=n3 

 
−1/β 

s 

. 
s−1 . 

 

 
t=n3 

 

 

qtf (δt 

 

 

−τ ) 

.1/β 
 

 . 

Again summing the last inequality from n3 to n − 1, we have 
 

 
 
1/α

 

n−1 
 

s−1 
. 

t−1 
.1/β 

 

xn  ≤ L1/αβ  
. 

b−1/α  
. 

a
−1/β 
. 

qj f (δj   τ )   . s 

s=n3 

t 

t=n3 

− 

j=n3 

 

From condition (5.2.4) we get xn  → −∞ as n → ∞ which contradicts that xn  is 

a positive solution of equation (5.1.1). Then we have ∆(bn(∆xn)α) > 0 for n ≥ n1 

 

and of one sign thus either ∆xn > 0 or ∆xn < 0. The proof is now complete. 
 

 

Lemma 5.2.2. Assume that (H1) and (H2) hold. Let {xn} be an eventually positive 

solution of the equation (5.1.1) for all n ∈ N0 and suppose that Case (ii)  of Lemma 

 

5.2.1 holds. If 
 
 
 

 
then limn→∞ xn  = 0. 

∞ . 
−1/α 
n 

n=n0 

. 
∞ . 

a−1/β
 

s=n 

∞ . 
 

 
t=s 

 
qt) 

 
1/β 

.1/α  

= ∞ (5.2.6) 

 
Proof. Let {xn} be a positive solution of the equation (5.1.1) then there exists A ≥ 0 

such that limn→∞ xn  = A.  Assume A > 0, then we have xn−τ   ≥ A  for n ≥ n2  ≥ n1. 

Summing the equation (5.1.1) from n to ∞, we have 

∞ 

an (∆ (bn(∆xn)α))
β  ≥ 
. 

qsf (xs 

s=n 

 

τ ) ≥ f (x 

 

 
n−τ 

∞ 

) 
. 

qs 

s=n 
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s 

b 
 a−1/β

 

b a 

n−τ 
b a 

b a 

∞ 

 
 

or 

∆ (bn(∆xn)α) ≥ 

 

. 
f (A) 

.1/β 
. 

∞ . 
qs 

an 

 

.1/β 

. 

s=n 

Summing the last inequality from n to ∞, we have 

∞ 

−bn(∆xn)α  ≥ (f (A))1/β 
. 

a−1/β
 

s=n 
 

or 

. 
∞ . 

qt 

t=s 

.1/β 

 

(f (A))1/αβ ∞ 
. .1/β 

1/α 

−∆xn ≥  
1/α 
n 

. 
s 

s=n 

. 
qt 

 . 
t=s 

Again summing the last inequality from n2 to ∞, we get 
 

 

xn2   
≥ (f (A)) 

 

∞ 

1/αβ  
.

 
 

n=n2 

 
 
−1/α 

n 

 
∞ . 

 
 

s=n 

 
 

−1/β 

s 

. 
∞ . 

 

 
t=s 

.1/β 
1/α 

qt 
 . 

 

This contradicts to the condition (5.2.6). The proof is complete. 
 
 

Theorem 5.2.1. Let (H1) and (H2) hold and there exists an integer σ such that 
 
 

σ > τ.  (5.2.7) 
 
 

If both first order delay difference equations 


n−τ −1 
. 

s 

 

.1/α


 
 
 
 
 

and 

∆yn + qnf (y
1/αβ 

)f  
. 

 

 
s=n2 

−1/α 
s 

. 
−1/β 
t 

t=n2 

 = 0, (5.2.8) 

 

 
∆xn + (f (xn+2σ−τ )) 

 
 
1/αβ 

 
 
−1/α 

n 


n+σ 
. 

 
 

s=n 

 
 

−1/β 

s 

.
s+σ 
. 

 

 
t=s 

.−1/β 
1/α 

qt 
 

 

 
= 0 (5.2.9) 

 

are oscillatory, then equation (5.1.1) is oscillatory. 
 

Proof. Assume that (5.1.1) has a nonoscillatory solution. Without loss of generality, 

there is a n1  ≥ n0  ∈ N0  sufficiently large such that xn  > 0 and xn−τ   > 0 for all 

n ≥ n1. From the equation (5.1.1), we have 

 

∆ 
.

an (∆ (bn(∆xn)α))
β 
. 

= −qnf (xn −τ ) < 0 for all  n ≥ n1. 
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n  n 

y 

a 
1/β 

b
1/α

 
n a 

−  n−τ 
b a 

 
 

Thus an∆ (bn(∆xn)α) is strictly decreasing then ∆ (bn(∆xn)α) and ∆xn are eventu- 

ally of one sign. Then from Lemma 5.2.1, we have the following cases for sufficiently 

large n2 ≥ n1 

(i) ∆xn > 0,  ∆(bn(∆xn)α) > 0, 

(ii) ∆xn < 0,  ∆(bn(∆xn)α) > 0. 

 

Case(i).  Let an(∆ (bn(∆xn)α)
β  

= yn, then we have 
 

1/β 

∆ (b  (∆x  )α) = 
n  

. 
n 

 

Summing the last inequality from n2 to n − 1, we have 
 

n−1 

 
 
n−1 

bn(∆xn)α  = bn  (∆xn )α  + 
. 

a−1/β y1/β ≥ y1/β 
. 

a−1/β 
2  2  s s 

s=n2 

n  s 

s=n2 

 

or 

1 
∆xn  ≥ y1/αβ   

 
n 

 

. 
n−1 . 

−1/β 
s 

s=n2 

 

.1/α 
 

. 

Summing the last inequality from n2 to n − 1, we get 
 

n−1 . 

 
 
1/αβ

 

 

 

−1/α
 

. 
s−1 . 

 

 

−1/β
 

.1/α 

xn  ≥  xn2   
+ 

 

 
s=n2 

n−1 

ys bs 
 

. 
s−1 

 

 
t=n2 

at 
 

.1/α 

≥  y1/αβ 
. 

b−1/α 
. 

a
−1/β  

. n s 

s=n2 

t 

t=n2 

 

There exists n3 ≥ n2 such that n − τ ≥ n2 for all n ≥ n3. Then 
 

 

xn   τ  ≥ y1/αβ 

 

n−τ −1 . 
 

 
s=n2 

 
 
−1/α 

s 

. 
s−1 . 

 

 
t=n2 

 

 
−1/β 

t 

.1/α 

 

 

for all  n ≥ n3. 

 

This and the equation (5.1.1), (C4) yield for all n ≥ n3, 
 
 

1/αβ
 


n−τ −1 
. 

 
 
1/α

 

. 
s−1 . 

 

 

−1/β
 

.1/α
 

−∆yn = qnf (xn−τ ) ≥ qnf (yn−τ  )f  bs 

s=n2 

at 
 . 

t=n2 
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s−τ 
b a 

α  
.

 

b 

b 

. 

− 

 
 

Summing the last inequality from n to ∞, we get 
  

∞  s−τ −1 
. 

t−1 
.1/α 

yn ≥ 
. 

qsf (y
1/αβ 

)f  
.

 
1/α 
t 

. 
−1/β 
j 

 
s=n t=n2 j=n2 

 
The function yn  is strictly  decreasing, and by Theorem 6.19.3 of [1] there exists 

a positive  solution of equation (5.2.8) which tends to zero, this contradicts that 

equation (5.2.8) is oscillatory. 

Case(ii).  Summing the equation (5.1.1) from n to n + σ, we have 
 

n+σ 

an (∆ (bn(∆xn)α))
β  ≥ 
. 

qsf (xs   τ ) 
s=n 

 

or 

∆ (bn(∆xn)α) ≥ 

 

. 
f (xn+σ−τ ) 

.
 

an 

 

1/β 
.

n+σ 
. 

 

 
s=n 

 

.1/β 

qs  . 

 

Summing the above inequality from n to n + σ, we obtain 
 

n+σ . 
f (x 

−bn(∆xn)   ≥ 
s=n 

 

s+σ−τ 

as 

) 
.1/β 

.
s+σ . 

qt 

t=s 

.1/β 

 

or 

−(∆xn)α ≥ 
 

 

or 

 
 

(f (xn+2σ−τ )) 

bn 

 

 
1/β  n+σ . 
 

 
s=n 

 
 

as
−1/β 

 

.
s+σ 
. 

 

 
t=s 

 

.1/β 

qt 

 

−∆xn ≥ 

 

(f (xn+2σ−τ )) 

1/α 
n 

 
1/αβ 


n+σ . 

 
 

s=n 

 

as
−1/β 

.
s+σ . 

 

 
t=s 

.1/β 
1/α 

qt 
 . 

Summing the last inequality from n to ∞, we get 

 

 

 
 

1/α
 

 

xn  ≥ (f (xn+2σ−τ )) 
∞ 

1/αβ 
.

 
 

s=n 

 
−1/α 

s 

s+σ . 
 
 

t=s 

 

at
−1/β 

. 
t+σ . 

 

 
j=t 

.1/β 

qj  . 

 
Since by Lemmas 5.2.1 and 5.2.2, there exists a positive solution of equation (5.2.9) 

which tends to zero, this contradicts that equation (5.2.9) is oscillatory. The proof 

is complete. 
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Theorem  5.2.2.  Assume that the first order delay difference  equation  (5.2.8) is 

oscillatory, condition (5.2.6), (H1)  and (H2)  hold.  Then every solution {xn} of 

equation (5.1.1) is either oscillatory or tends to zero as n → ∞. 

Proof. The proof follows from Theorem 5.2.1 of Case(i) and Lemma 5.2.2 and hence 

the details are omitted. 
 
 

5.3  Examples 
 
 

In this section, we present some examples to illustrate the main results. 
 
 

Example 5.3.1. Consider the difference equation 

. 
 

∆ n∆ 

. 
1 
(∆xn)1/3

 
n2

 

.3
. 

+ 

 
1 

n 
xn

 

 

−2 = 0, n ≥ 1. (5.3.1) 

 

Here f (u) = u,  qn  = 1 ,  an  = n,  bn  =   1 ,  τ  = 2, α = 1 , and β = 3.  Further  

.∞   1  
 

n  n2  3 

.∞ 6
 

n=1  n1/3     = ∞, n=1  n = ∞.  It  is easy  to see  that condition (5.2.6) holds. 
 

Further the equation (5.2.8) reduces to 
 

n−3 

∆yn +    
. 

n6 

n 
s=1 

. 
s 
. 

 

 
t=1 

1 
.3 

t1/3 

 
 
yn−2 = 0. (5.3.2) 

 

Then by Theorem 7.5.1 of [36], the equation (5.3.2) is oscillatory, provided that 
 

 
lim inf 

n→∞ 

 

n−1 . 
 

s 
s=n−2 

 
s−1 


. 

t6
 

t=1 

. 
t . 

 

j 
j=1 

 

 

1 
1/3 

.3
 

 

 

. 
2 
.3 

> , 
3 

 

and according to Theorem 5.2.2 every nonoscillatory solution of equation  (5.3.1) 

tends to zero as n → ∞. 
 

 

Example 5.3.2. Consider the difference equation 

. 
 

∆ n∆ 

. 
1 
(∆xn)3

 
n3

 

.1/3
.

 
+ 

 
1 

n2 
xn

 

 

−2 = 0, n ≥ 1. (5.3.3) 

 

Here f (u) = u,  qn  =   1 ,  a 
= n,  b =   1 ,  τ  = 2, α = 3, and β = 1 .  Further  

.∞  1
 

n2  n 

.∞ 9
 

n  n3  3 

n=1  n3   = ∞, n=1  n = ∞. It is easy to see that condition (5.2.6) holds. Further 
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a b 
0 α 

 
 

it  is easy to see  that all conditions of Corollary 5.2.2 are satisfied. Hence every 

nonoscillatory solution of equation (5.3.3) tends to zero as n → ∞. 

 
We conclude this chapter with the following remark. 

 
 

Remark  5.3.1. It would be interesting to extend the results of this chapter to the 
 

equation (5.1.1) when 
.∞  1  < ∞ and / or 

.∞  1  < ∞. n=n     1 

β 
n 

n=n0     
1 
n 


